special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2034204

СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ (ВАРИАНТЫ)

СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ (ВАРИАНТЫ)

Имя изобретателя: Геруни Парис Мисакович[AM] 
Имя патентообладателя: Геруни Парис Мисакович[AM]
Адрес для переписки: 
Дата начала действия патента: 1992.08.18 

Сущность изобретения: солнечная электростанция (СЭС), по первому варианту содержит неподвижный зеркальный сферический концентратор 1, наклоненный под углом, равным широте места, и контур выработки электроэнергии, имеющий основной и дополнительный теплообменники 3 и турбину с электрогенератором, причем теплообменники установлены в районе квазифокуса концентратора на ферме 14, вращающейся вокруг центра кривизны концентратора. Контур выработки энергии выполнен воздушным и открытого типа, турбина с электрогенератором установлены в центре сферы или наверху опорной башни 12, или на поверхности земли у основания башни, при этом турбина соединена с теплообменником гибким или шарнирным трубопроводом, а электрогенератор соединен с турбиной карданным валом. Неподвижный сферический концентратор выполнен в виде вырезки из полусферы с апертурным углом 150 град. в плоскости местного меридиана. Криволинейная поверхность или огибающая спирального трубопровода теплообменника перпендикулярны в каждой точке отраженным от сферического зеркала лучам и заданы параметрическим уравнением. На верхнем конце вращающейся фермы установлен оптический телескоп, а на нижнем конце - приемная антенна - облучатель, позволяющие в свободное время (например, ночью) использовать СЭС в качестве оптического (или) радиотелескопа. Во втором варианте СЭС с полностью неподвижными узлами и подвижным вторичным зеркалом задан профиль последнего.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к гелиотехнике, в частности к мощным электростанциям и теплостанциям.

Известны гелиоустановки [1,2] с подвижным сферическим зеркалом концентратором, плоскость раскрыва которого наклонена под углом, равным широте места, и с контуром выработки электроэнергии с теплообменником, установленным в квазифокальной области сферического зеркала с возможностью вращения вокруг его центра.

Однако в упомянутых устройствах сферическое зеркало состоит из неподвижной и подвижной частей, причем конфигурация неподвижной части не оговорена, а подвижная часть составляет существенную долю от общей площади зеркала, что удорожает стоимость и ухудшает точность и надежность в эксплуатации. Кроме того, в контуре выработки электроэнергии замкнутого типа используются традиционные теплоносители (вода-пар), что громоздко (требует градирни) и дает низкий КПД. Применяемый подвижный отражатель сопровождается использованием дополнительных подвижных концентраторов и линз, а его образующая задана громоздкими приближенными соотношениями, что неоптимально.

Целью изобретения является расширение области применения и повышение эффективности при упрощении конструкции и технологии изготовления и эксплуатации.

Поставленная цель достигается тем, что в предлагаемой солнечной электростанции (СЭС), содержащей неподвижно установленный зеркальный сферический концентратор, плоскость раскрыва которого наклонена под углом, равным широте места, и контур выработки электроэнергии, имеющий один-основной или два-основной и дополнительный теплообменники, соединенные последовательно или работающие автономно, и турбину с электрогенератором, при этом основной теплообменник установлен на ферме, расположенной на опорной башне (или треноге), имеет противовес и размещен в квазифокальной области сферического концентратора на расстоянии около половины радиуса сферы с возможностью вращения вокруг ее центра, причем основной теплообменник выполнен в виде объема с криволинейной поверхностью или спирального трубопровода, или в виде диска, перпендикулярного оси симметрии, или в форме цилиндрической трубы, а дополнительный теплообменник выполнен цилиндрическим и расположен вдоль оси симметрии концентратора, между последним и основным теплообменником с возможностью совместного с ним вращения, вся отражающая поверхность и вся опорная конструкция сферического концентратора выполнена полностью стационарными, контур выработки электроэнергии выполнен воздушным и открытого типа, турбина с электрогенератором установлены в центре сферы, или наверху опорной башни, или на поверхности земли у основания башни, при этом турбина соединена с теплообменником гибким или шарнирным трубопроводом, а электрогенератор соединен с турбиной карданным валом.

Кроме того, неподвижный сферический концентратор выполнен в виде вырезки из полусферы с апертурным углом в 150о в плоскости экватора и в 120о в плоскости местного меридиана.

Кроме того, при выполнении основного теплообменника в виде объема с криволинейной поверхностью или спирального трубопровода, криволинейная поверхность или огибающая спирального трубопровода выполнены в соответствии с уравнением



A 2 l cos где все линейные величины (х,у,l) отнесены к радиусу сферического концентратора, принятому за единицу,

х,у координаты текущей точки рабочей поверхности теплообменника,

l расстояние от центра сферы концентратора до вершины профиля теплообменника,

угол между осью симметрии концентратора и радиусом сферы в точке падения на нос текущего луча от Солнца.

Кроме того, в ночное время она дополнительно содержит оптическое зеркало, установленное на верхнем конце вращающейся фермы, несущей основной теплообменник, соосное с фермой и направленное вверх вдоль оси симметрии используемого раскрыва концентратора, и съемную приемную антенну-облучатель зеркала концентратора, установленную на нижнем конце фермы и направленную на зеркало концентратора.

Кроме того, в СЭС, содержащей неподвижно установленный сферический концентратор, плоскость раскрыва которого наклонена под углом, равным широте места, вторичное зеркало с фокусом, совпадающим с центром кривизны сферического концентратора, установленное с возможностью вращения вокруг центра кривизны концентратора, и контур выработки электроэнергии, огибающая профиля вторичного зеркала выполнена в соответствии с уравнением



где x,y координаты текущей точки образующей рабочей поверхности вторичного зеркала, отнесенные к радиусу сферического концентратора, принятому за единицу,

угол между осью симметрии концентратора и радиусом кривизны концентратора в точке падения текущего луча.

Кроме того, сферическая рабочая поверхность теплообменника, установленного неподвижно в центре кривизны сферического концентратора, с центром, совпадающим с центром кривизны концентратора, выполнена в виде вырезки из сферы с плоскостью раскрыва, наклоненной под углом, равным широте места и с апертурными углами, равными 150ов плоскости экватора и 50о в плоскости местного меридиана.

Наличие причинно-следственных связей между совокупностью существенных признаков данного изобретения и достигаемым техническим результатом (целью изобретения) заключается прежде всего в следующем.

Сферический концентратор и его опорные (несущие) конструкции, выполненные полностью неподвижно в виде сварных металлоконструкций обеспечивают простоту, надежность и дешевизну всей конструкции как при изготовлении, так и при юстировке зеркала и длительной эксплуатации СЭС. Особенно важно это для мощных СЭС с крупногабаритными концентраторами, где наличие подвижных секций концентратора весьма нежелательно, так как перемещение сотен тонн конструкций требует рельсовых путей с мощным фундаментом, систем колес, редукторов, электроприводов и пр. Кроме того, наличие протяженных (десятки и более метров) металлоконструкций приводит к существенным деформациям зеркала и снижению его точности и КПД из-за перепадов температуры в течение дня и от зимы к лету. Таким образом, данное решение позволяет реализовать как маломощные СЭС (5-10 кВт), так и мощные (5-10 МВт и более), т.е. существенно расширяет область применения СЭС при упрощении и удешевлении конструкции. Практическое отсутствие деформаций приводит к повышению точности и КПД концентратора, т.е. его эффективности.

Конфигурация полностью неподвижного зеркала концентратора с указанными апертурными углами в 150о в плоскости экватора и в 120о в плоскости местного меридиана оптимальна и позволяет (наряду с наклоном плоскости раскрыва на угол, равный широте места) обеспечить работу СЭС в течение сего года в течение в среднем около 9,5 часов ежедневно.

Выполнение контура выработки электроэнергии воздушным, открытого типа, позволяет упростить конструкцию (отсутствие градирен), существенно повысить КПД и обеспечить полную экологическую чистоту СЭС, т.е. существенно повысить ее эффективность.

Выполнение профиля (огибающей) теплообменника в соответствии с приведенным уравнением обеспечивает нормальное (перпендикулярное) в каждой точке падение лучей от концентратора на рабочую поверхность теплообменника, что повышает его КПД и эффективность.

Дополнительное введение оптического зеркала (телескопа) позволяет использовать СЭС в ночное время в качестве довольно крупного оптического телескопа (в научных и учебных целях) для наблюдений небесных объектов.

Введение антенны-облучателя позволяет использовать СЭС в ночное (и в дневное) время в качестве радиотелескопа. Эти мероприятия повышают общую эффективность и общеполезность СЭС.

Выполнение профиля вторичного зеркала в соответствии с приведенным простым уравнением позволяют выбрать его оптимальные размеры и местоположение вдоль оси симметрии концентратора, что наряду с отсутствием дополнительных подвижных зеркал и линз повышает общую эффективность СЭС.

СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ
 
 
 

На фиг.1 показана схема СЭС в плоскости местного меридиана; на фиг.2 ее конструкция в той же плоскости; на фиг.3 приведена схема СЭС в плоскости экватора; на фиг.4 показана аксонометрическая схема общего вида СЭС; на фиг.5 представлена конструкция основного теплообменника зафокального типа в виде объема с криволинейной поверхностью; на фиг.6 конструкция комбинированного теплообменника с основным зафокального типа в виде спирального трубопровода и с дополнительным в форме цилиндрической трубы; на фиг.7 показан контур выработки электроэнергии с общим валом турбина-компрессор; на фиг.8 то же, с раздельными валами; на фиг.9 вариант СЭС с подвижным вторичным зеркалом и неподвижным теплообменником.

СЭС содержит неподвижное сферическое зеркало 1, выполненное как вырезка из полусферы. В каждый данный момент времени используется часть зеркала. Диаметр 2 используемого раскрыва 2 выбирается равным 0,6-0,7 от диаметра сферы 1. Положение используемого раскрыва 2 показано (для полудня) в дни равноденствия (21 марта и 22 сентября), а и в самый длинный день (22 июня) и в самый короткий день года (22 декабря). Соответственно показаны положения основного теплообменника 3 (с турбиной и электрогенератором), установленного в области квазифокуса сферического концентратора, на расстоянии около полрадиуса сферы от зеркала с возможностью вращения вокруг центра 4 сферы. Показаны пределы вращения теплообменника ( ±23о вокруг оси склонений 16 в течение года). Показана часовая ось 5 вращения в течение дня. Плоскость раскрыва 6 усеченной полусферы и главная ось 7 зеркала наклонены к югу на угол <N>phi<N>, равный широте места. Показан и апертурный угол концентратора в данной плоскости, равный 120о.

Неподвижное сферическое зеркало 1 (см. фиг.2) концентратора собрано, например, из отдельных кусков (панелей) размерами около 0,5 х 0,5 м2 зеркального стекла (покрытых сзади отражающим металлическим слоем) толщиной 6 мм (чтобы не побил град), укрепленных (с возможностью начальной подрегулировки) на невысоких стойках 8, приваренных к сварному опорному (несущему) каркасу 9 из стальных труб и угольников. Каркас закреплен на небольших бетонных фундаментах 10, устроенных на поверхности земли 11, выбранной с естественным уклоном к югу (с целью уменьшения объема металлоконструкций каркаса 9).

Поворотные механизмы (два) с электроприводами установлены в центре 4 сферы 1 на опорной башне 12 (высотой, равной радиусу сферы и расчаленной тросами), представляющей собой сварную металлоконструкцию, установленную на фундаментах 13. Механизмы вращают подвижную ферму 14, представляющую собой сварную металлоконструкцию, несущую на нижнем своем конце теплообменник 3, а на верхнем конце противовес 15.

 

Вместо противовеса (точнее, его части) на верхнем конце фермы 14 может быть установлено оптическое зеркало ("смотрящее" вверх).

Рядом с теплообменником 3 установлена съемная приемная антенна облучатель 17.

Площадь тени на зеркале 1 от теплообменника 3, фермы 14 и противовеса 15 (общая) не превышает 2% от площади используемого раскрыва 2 (при отношении диаметра последнего к диаметру сферы, равном 0,6). Тень от конструкций башни 12 составляет еще около 3%

Для смывания пыли и снега с зеркала 1 в каркасе 9 предусмотрены трубы с водой и шланги (не показаны). Между панелями зеркала 1 имеются технологические щели, служащие и для стока воды на землю. Поверхность земли под зеркалом не подвержена эрозии, так как покрыта травой или сплошь забетонирована.

Пределы вращения теплообменника 3 по часовой оси 5 в плоскости экватора (в направлении Восток-Запад) показаны на фиг.3 и составляют (при данной вырезке из полусферы) ±75о (10 ч), с 7 ч утра до 17 ч Солнечного времени, а апертурный угол концентратора в плоскости экватора составляет 150о.

Общий вид неподвижного сферического зеркала 1 в виде оптимальной вырезки из полусферы, а и его расположение в пространстве представлены на аксонометрической схеме на фиг.4. Поверхность построенной вырезки составляет 65% от поверхности полусферы. Здесь же показаны оси 5 и 16 вращения сферы 14. В мощных СЭС монтировка механизмов вращения может быть не параллактической, а азимутальной, что не вызывает затруднений. Отношение площади используемого раскрыва 2 ко всей поверхности построенного зеркала 1 составляет около 0,31 для основного теплообменника и возрастает до 0,41 при включении дополнительного теплообменника.

Для сокращения объема металлоконструкций опорного каркаса 9 большое значение имеет выбор места постройки СЭС. Как уже отмечалось, выбор южного склона ведет к существенному сокращению каркаса 9 (см. фиг.2).

Из фиг.4 же следует, что еще лучше, если на таком склоне будет седловина между двумя буграми (ущелье, овраг, ориентированные на юг). Такое место легко найти в горах или на местности, пересеченной оврагами. Отметим, что на высоте 1500-2000 м над уровнем моря солнечная постоянная выше, чем на уровне моря примерно на 20% и составляет около 1 кВт/м2. Там же обычно велико число солнечных дней в году (270-300).

Основной теплобменник 3 с вогнутой (к зеркалу) поверхностью, называется зафокальным. Его кривая рабочая поверхность перпендикулярна в каждой точке к отраженному от сферы лучу. Такая поверхность описывается приведенным уравнением. Могут быть семейства основных теплообменников различного типа. Из приведенного уравнения следует, что при l 0,5 имеем семейство зафокальных теплообменников, а при l > 0,5 семейство предфокальных теплообменников (выпуклых к зеркалу). Могут применяться и дисковидные теплообменники, а и стержневые (трубовидные), расположенные вдоль оси симметрии 7 концентратора. Могут применяться и комбинации из перечисленных видов теплообменников. Конструктивно основные теплообменники представляют собой металлические объемы, либо спиралевидные трубы.

На фиг.5 представлена конструкция основного зафокального теплобменника 3 в виде объема 18 с криволинейной поверхностью, симметричной по отношению к оси симметрии 7 концентратора и расположенной в квазифокальной области (l 0,5) концентратора. На фиг. 6 представлена конструкция комбинированного теплообменника с основным зафокальным теплообменником в виде спирального трубопровода 19 с внутренней огибающей 20 в соответствии с приведенным выше уравнением и с дополнительным теплообменником 22 в виде цилиндрических труб с наружными кольцевыми ребрами 21, перпендикулярными к идущим от зеркала 1 лучам. Для основного теплообменника используемый диаметр 2 (см. фиг.1-4) составляет 0,6 от диаметра полусферы, а для дополнительного 0,7. Это означает, что дополнительный теплообменник дает еще около 36% тепловой энергии (если энергию от основного принять за 100%). Тыльные (верхние) стороны теплообменников покрыты слоем теплоизоляции 23.

Воздушный контур выработки электроэнергии открытого типа включает кроме теплообменника 3,18,23 и воздушную турбину 24 с валом 25, воздушный компрессор 26, электрогенератор 27, редукторы 28, 29, стартер 30 и др. (см. фиг.7 и 8).

Воздушная турбина 24 выполнена с общим валом 25 с компрессором 25 (см. фиг.7) или без общего вала (см. фиг.8). В первом случае турбина 24 соединена общим валом 25 с компрессором 26 и электрогенератором 27 через понижающий редуктор 28. К валу 25 через повышающий редуктор 29 подсоединен и стартер 30, питающийся от внешнего источника энергии 32. К фланцам 31 подсоединен теплообменник 3,18,23. Во втором случае (см. фиг.8) турбина 2 (с электрогенератором 27) механически разобщена от компрессора 26, а (стартерный) двигатель 33 соединен электрокабелем с электрогенератором 27 через переключатель 34. Во втором варианте имеются дополнительные (электрические) потери, но преимуществом является возможность более удобного пространственного расположения узлов компрессора и турбины, например сокращения длины и изгибов трубопроводов, размещение турбины 24 с электрогенератором 27 (или электрогенератор отдельно) неподвижно в области центра 4 сферы 1 или у основания башни 14.

В качестве общего узла турбины 24, компрессора 26, редукторов 27 и 29 и стартера 30 могут быть использованы самолетные, вертолетные или автомобильные газотурбинные двигатели. Они очень компактны, легки, работают при любой ориентации в пространстве и выпускаются в большом спектре мощностей: от 50 кВт до 20 МВт и более. Нужна лишь небольшая переделка: следует удалить камеры сгорания (расположенные между компрессором и турбиной) и вывести воздухопроводы к фланцам 31. Эти готовые двигатели (можно и отслужившие ресурс в воздухе) лучше использовать в режиме 0,5 или 0,25 их номинальной мощности, что существенно продлит срок их службы и резко сократит уровень издаваемого ими шума.

При установке турбины и электрогенератора в области центра сферы, причем неподвижно на башне или на земле, у основания башни, турбина соединена с теплообменником гибким или шарнирным трубопроводом, а электрогенератор соединен с турбиной карданным валом.

В варианте СЭС с неподвижным теплообменником (и турбиной с электрогенератором) в центре 4 сферы 1 имеется дополнительное подвижное вторичное зеркало, установленное в нижней части фермы 14 с возможностью вращения вокруг центра сферы. Рабочая (нижняя) поверхность теплообменника имеет форму части сферы с центром, совпадающим с центром 4 кривизны сферического концентратора. Теплообменник имеет небольшие размеры, а конфигурация его рабочей поверхности повторяет конфигурацию зеркала 1 (см. фиг.4) и концентрична с последним. Апертурные углы этого теплообменника составляют 150о в плоскости экватора и около 50о в плоскости местного меридиана. Образующая профиля вторичного зеркала задана простым и точным (не приближенным) уравнением, что позволяет упростить расчеты, облегчить выбор оптимального варианта такого СЭС, повышает точность вторичного зеркала и положение его установки в пространстве, т.е. эффективность СЭС в целом.

СЭС РАБОТАЕТ СЛЕДУЮЩИМ ОБРАЗОМ

Каждый день утром ось фермы 14 (см.фиг.2 и 3) направляются в точку неба, где в 7 ч утра данного дня (по истинному солнечному времени) будет находиться центр диска Солнца. С появлением Солнца в указанной точке включается автосопровождение (простая следящая система). Через несколько минут теплообменник 3 оказывается раскаленным (до температуры порядка 1200оС) и включается стартер 30 (см. фиг.7, 8). Компрессор 26 нагнетает из атмосферы воздух (под давлением порядка 7 атм.) через теплообменник 3,18-23 на турбину 24. Прогревшись в котле до температуры около 700-800оС, воздух вращает турбину и, отдав ей энергию (нагрева и сжатия), выходит в атмосферу (при остаточной температуре около 100оС). Через 20 с стартер 30 отключается, и компрессор 26 продолжает вращаться от турбины 24 (со скоростью в несколько тысяч оборотов в минуту). Турбина же (через редуктор 28) вращает электрогенератор 27, отдающий электрическую энергию в сеть. Приведенные выше значения температуры, давления и другие зависят от типа турбины. Здесь приведены значения для турбодвигателя вертолета МИ-8, мощностью в 1 МВт.

КПД двухконтурных газовых турбин высокий и достигает 30-40% Таким образом, КПД СЭС в целом ориентировочно равен: К= Кзер·Кт.обм·Ктруб·Кэл.ген. 0,9·0,9·0,38·0,97·0,3.

Указанный режим работы продолжается по 10 ч в день (с 7 часов до 17 часов) большую часть года (около восьми месяцев). Зимой длительность дня сокращается и зависит от широты места. Например, при =40о, в самый короткий день года, 22 декабря, длительность дня (и работы СЭС) составляет 9 ч 30 мин (с 7 ч 15 мин до 16 ч 45 мин). В 7 ч СЭС начинает работу с 50% мощностью от номинальной (в 7 ч 15 мин с 70% мощностью), в 8 ч СЭС отдает уже 89% мощности, а около 9 ч 100% Эквивалентное время ежедневной работы СЭС со 100% мощностью составляет 9,5 ч.

Дополнительно к электрической энергии СЭС в течение тех же 10 ч в день вырабатывает тепловую энергию (например, пар, горячая вода) с помощью дополнительного котла 22 (см. фиг.6). Это дополнительное тепло может быть, конечно, использовано и для увеличения мощности вырабатываемой СЭС электроэнеpгии (на 36%).

Использование дополнительного котла позволяет и при заданной выходной мощности СЭС уменьшить радиус сферы 1 на 15% что существенно (около 28%) уменьшает поверхность зеркала и снижает объем материалов и строительных работ.

Работа СЭС в варианте с неподвижным теплообменником, вращающимся дополнительным вторичным зеркалом аналогична описанной выше работе с той лишь разницей, что здесь нет дополнительного теплообменника. Вся энергия от выбранного используемого раскрыва неподвижного сферического концентратора направляется на неподвижный теплообменник в центре сферы. Таким образом, в этом варианте все узлы и агрегаты (сферический концентратор, теплообменник, турбина, электрогенератор) полностью неподвижны, а вращается лишь вторичное зеркало.

В свободное от основной работы время (например, ночью) СЭС может использоваться оптический и (или) радиотелескоп, благодаря установленным в верхней части фермы 14 оптическому зеркалу (телескопу) и в нижней ее части приемной антенне-облучателю. Последняя может быть съемной или откидной (вверх), чтобы не попасть днем в квазифокус (при неполадках в приводе фермы или других ЧП) и не испортиться.

СЭС одновременно с основной работой может использоваться и как большие и точные солнечные часы и календарь (по тени от башни), для чего на зеркале 1 следует нанести соответствующие деления.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Солнечная электростанция, содержащая неподвижно установленный зеркальный сферический концентратор, плоскость раскрыва которого наклонена под углом, равным широте места, и контур выработки электроэнергии, имеющий один основной или два основной и дополнительный теплообменника, соединенных последовательно или работающих автономно, и турбину с электрогенератором, при этом основной теплообменник установлен на ферме, расположенной на опорной башне, имеет противовес и размещен в квазифокальной области сферического концентратора на расстоянии около половины радиуса сферы с возможностью вращения вокруг ее центра, причем основной теплообменник выполнен в виде объема с криволинейной поверхностью или спирального трубопровода, или в виде диска, перпендикулярного оси симметрии, или в форме цилиндрической трубы, а дополнительный теплообменник выполнен цилиндрическим и расположен вдоль оси симметрии концентратора между последним и основным теплообменником с возможностью совместного с ним вращения, отличающаяся тем, что контур выработки электроэнергии выполнен воздушным, турбина с электрогенератором установлены в центре сферы или наверху опорной башни, или на поверхности земли у основания башни, при этом турбина соединена с теплообменником гибким или шарнирным трубопроводом, а электрогенератор соединен с турбиной карданным валом.

2. Электростанция по п.1, отличающаяся тем, что неподвижный сферический концентратор выполнен в виде вырезки из полусферы с апертурным углом 150o в плоскости экватора и 120o в плоскости местного меридиана.

3. Электростанция по п.1, отличающаяся тем, что при выполнении основного теплообменника в виде объема с криволинейной поверхностью или спирального трубопровода криволинейная поверхность или огибающая спирального трубопровода выполнены в соответствии с уравнением



где все линейные величины (x, y, l) отнесены к радиусу сферического концентратора, принятому за единицу,

x, y координаты текущей точки рабочей поверхности теплообменника;

l расстояние от центра сферы концентратора до вершины профиля теплообменника;

q угол между осью симметрии концентратора и радиусом сферы в точке падения на нее текущего луча от Солнца.

4. Электростанция по п.1, отличающаяся тем, что в ночное время она дополнительно содержит оптическое зеркало, установленное на верхнем конце вращающейся фермы, несущей основной теплообменник, соосное с фермой и направленное вверх вдоль оси симметрии используемого раскрыва концентратора, и съемную приемную антенну-облучатель, установленную на нижнем конце фермы и направленную на зеркало концентратора.

5. Солнечная электростанция, содержащая неподвижно установленный сферический концентратор, плоскость раскрыва которого наклонена под углом, равным широте места, вторичное зеркало с фокусом, совпадающим с центром кривизны сферического концентратора, установленное с возможностью вращения вокруг центра кривизны концентратора, и контур выработки электроэнергии с теплообменником, установленным в центре кривизны концентратора, отличающаяся тем, что огибающая профиля вторичного зеркала выполнена в соответствии с уравнением



где x, y координаты текущей точки образующей рабочей поверхности вторичного зеркала, отнесенные к радиусу сферического концентратора, принятому за единицу,

угол между осью симметрии концентратора и радиусом кривизны концентратора в точке падения текущего луча.

6. Электростанция по п.5, отличающаяся тем, что теплообменник установлен неподвижно и имеет рабочую поверхность, выполненную в виде вырезки из сферы с центром, совпадающим с центром кривизны концентратора.

Версия для печати
Дата публикации 03.02.2007гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';>