special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2279558

УСТАНОВКА ДЛЯ ПРЕОБРАЗОВАНИЯ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА В ЭЛЕКТРИЧЕСКУЮ ЭНЕРГИЮ

УСТАНОВКА ДЛЯ ПРЕОБРАЗОВАНИЯ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА
В ЭЛЕКТРИЧЕСКУЮ ЭНЕРГИЮ

Имя изобретателя: Аллаяров Артур Фирдаусович (RU); Бадамшин Ильдар Хайдарович (RU 
Имя патентообладателя: Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" (RU)
Адрес для переписки: 450000, Республика Башкортастан, г.Уфа, ул. К. Маркса, 12, УГАТУ, отдел интеллектуальной собственности, В.П.Ефремовой
Дата начала действия патента: 2000.01.01 

Изобретение относится к теплоэнергетике, в частности к установкам для преобразования низкопотенциальной энергии в электрическую. Установка для преобразования низкопотенциального тепла в электрическую энергию содержит корпус, термоэлектрические модули, соединенные с аккумуляторной батареей, термоэлектрические модули расположены за калорифером газотурбинной электростанции, состоящей из последовательно установленных компрессора, камеры сгорания, турбины, свободной турбины и электрогенератора и тепловой насос. Изобретение позволяет расширить функциональные возможности преобразования низкопотенциального тепла в электрическую энергию и повысить КПД установки.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к теплоэнергетике, в частности к установкам для преобразования низкопотенциальной энергии в электрическую.

Известен термоэлектрический генератор, преобразующий тепло сжигания топлива, включающий камеру каталитического сжигания топлива, содержащую катализатор, термоэлектрические преобразователи, источник топлива, средства для смешения топлива с воздухом и средства для подачи горючей смеси в камеру каталитического сжигания, средства для предварительного нагревания катализатора до температуры каталитической реакции окисления топлива, например электрический нагреватель, и средства для его отключения после достижения температуры каталитической реакции, заключенные между двумя керамическими или металлическими пластинами, камера каталитического сжигания образована, по крайней мере, одним термоэлектрическим преобразователем и катализатор нанесен на высокотемпературную поверхность термоэлектрического преобразователя.

(Патент RU №2197054 МПК H 02 N 3/00, публикация 20.01.2003)

Недостатком генератора являются большие потери в связи с теплопроводностью термоэлементов, высокая температура горения, что снижает ресурс термоэлектрических модулей и требует частой замены, а и ограниченные функциональные возможности.

Аналогом и является теплоэлектрогенератор, включающий корпус-нагреватель с камерой горения и водяной рубашкой, блок вентилятора с двигателем, ротором, входным и выходным воздушными патрубками, размещенными термоэлектрическими модулями с возможностью подачи электроэнергии на двигатель блока вентилятора и внешние потребители, ротор снабжен плоскопараллельными дисками, отделенными от камеры горения герметичной разделительной стенкой с укрепленными на ней и на горизонтальных поверхностях камеры сгорания упомянутыми термоэлектрическими модулями, а со стороны ротора на герметической разделительной стенке выполнены теплосъемные пластины, расположенные в воздушных промежутках между плоскопараллельными дисками. Техническим результатом аналога является возможность получения от одного генератора трех энергоносителей - горячей воды, горячего воздуха, электроэнергии, повышение технологичности использования, упрощение запуска в работу, повышение экологичности и безопасности использования.

(Патент RU №2166702 МПК F 24 H 6/00, публикация 10.05.2001)

и известен аналог - термоэлектрический генератор, содержащий узел нагревателя, узел охладителя и батареи термоэлементов, выполненные в виде модулей, которые собраны в блок, размещенный между узлами нагревателя и охладителя. Узел нагревателя может быть выполнен полым, что дает возможность устанавливать его на выхлопной трубе двигателя внутреннего сгорания или дизеля. Предложенная конструкция в сочетании с 4-компонентным материалом термоэлементов обеспечивает получение компактного генератора, который легко размещается как в корпусе судов в месте размещения выхлопной трубы, так и автомобиля. При этом в зависимости от мощности двигателя можно получить генератор с выходной мощностью 10-30 кВт и более и с КПД порядка 10%. Изобретение может быть использовано в ТЭГ, применяемых с целью утилизации отработавшего тепла ядерных реакторов, двигателей внутреннего сгорания (ДВС), дизельных и других тепловых двигателей.

(Патент RU №2191447 МПК Н 01 L 35/2, публикация 20.10.2002)

Недостатком этих аналогов являются ограниченные функциональные возможности в связи с использованием термоэлектрических модулей как основного источника электрической энергии.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является установка для преобразования низкопотенциального тепла в электрическую энергию, выполненная в виде системы выпуска двигателя внутреннего сгорания, которая содержит корпус, входной патрубок, сопло Лаваля, термоэлектрогенератор с радиаторами и термоэлементами, соединенный с аккумуляторной батареей, вихревую регулируемую трубу, кольцевые сопла Лаваля, в которых на расширяющихся конических поверхностях установлены направляющие, которые придают газовым потокам противоположные движения газов по траектории расширяющейся винтовой спирали, а термоэлектрогенератор соединен с аккумуляторной батареей при помощи диода. Холодные спаи термоэлементов термоэлектрогенератора охлаждаются потоком набегающего воздуха с помощью сопла Лаваля или жидкостью. Изобретение позволяет повысить эффективность системы, улучшить утилизацию бросовой тепловой энергии путем превращения ее части в электрическую для подзарядки аккумуляторной батареи, предотвратить разряд аккумуляторной батареи на термоэлектрогенератор.

(Патент RU №2081337 МПК F 01 N 5/02, 3/04, публикация 10.06.97)

Недостатком прототипа является его ограниченные функциональные возможности.

Задачи изобретения - расширение функциональных возможностей и повышение КПД, за счет применения термоэлектрических модулей и теплового насоса.

Поставленная задача достигается тем, что в установке для преобразования низкопотенциального тепла в электрическую энергию, содержащей корпус, термоэлектрические модули, соединенные с аккумуляторной батареей, в отличие от прототипа, устанавливают тепловой насос за термоэлектрическими модулями, а термоэлектрические модули расположены за калорифером газотурбинной электростанции, состоящей из последовательно установленных компрессора, камеры сгорания, турбины, свободной турбины и электрогенератора.

На чертеже приведена схема установки.

УСТАНОВКА ДЛЯ ПРЕОБРАЗОВАНИЯ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА В ЭЛЕКТРИЧЕСКУЮ ЭНЕРГИЮ. Патент Российской Федерации RU2279558

Сущность изобретения заключается в преобразовании энергии бросовых газов в полезную электрическую энергию при помощи термоэлектрических модулей и теплового насоса.

Установка включает в себя газотурбинную электростанцию, состоящую из компрессора 1, жестко соединенного с турбиной 2, камеры сгорания 3, свободной турбины 4, приводящей во вращение электрогенератор 5, калорифера 6 и термоэлектрических модулей 7, за которыми устанавливается тепловой насос 8.

Установка работает следующим образом. Воздух сжимается компрессором 1 и под давлением подается в камеру сгорания 3. Туда же, и тоже под давлением, впрыскивают горючее и поджигают его. Горячие газы выходят из камеры сгорания 3, вращают турбину 2 и свободную турбину 4. Турбина 2 в свою очередь через вал вращает компрессор 1, сжимающий воздух, а свободная турбина 4 приводит во вращение электрогенератор 5. Далее горячие газы отдают часть тепла калориферу 6, термоэлектрическим модулям 7 и тепловому насосу 8.

Газотурбинная электростанция, например ГТЭ 10-95, имеет полезную электрическую мощность 10 МВт и тепловую энергию 15 МВт. В итоге 83% энергии топлива, сгоревшего в двигателе, превращается в полезную энергию. Остальная энергия выбрасывается в выхлопную трубу и затрачивается на работу трения.

Для доказательства повышения КПДустановки проведем расчеты.

Примем следующие параметры ГТУ:

  • Температура горячих газов Тг=500°К;
  • Температура воздуха Т х=300°К;
  • Расход газа G=70 кг/с.

Тогда теряемая мощность составит:

N=G·L=G·Cp ·(Tг-Tх)=70·1100·(500-300)=15400000 Bт=15,4 МВт.

Принимая КПД термоэлементов 3%, получим электрическую мощность, снимаемую с термоэлектрических модулей 15,4·0,03=0,5 МВт.

Таким образом, с использованием термоэлектрических модулей КПД газотурбинной электростанции повышается на 2%.

При использовании теплового насоса оставшееся тепло, это 15,4-0,5=14,9 МВт, можно преобразовать в полезную энергию. Считая КПД теплового насоса 10%, получим 0,1·14,9=1,49 МВт.

Таким образом, с использованием теплового насоса КПД установки повышается на 6%.

Итак, полученное изобретение позволяет расширить функциональные возможности и повысить КПД за счет использования термоэлектрических модулей и теплового насоса как дополнительных источников энергии.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Установка для пребразования низкопотенциального тепла в электрическую энергию, содержащая корпус, термоэлектрические модули, соединенные с аккумуляторной батареей, отличающаяся тем, что содержит тепловой насос, расположенный за термоэлектрическими модулями, а термоэлектрические модули расположены за калорифером газотурбинной электростанции, состоящей из последовательно установленных компрессора, камеры сгорания, турбины, свободной турбины и электрогенератора.

Версия для печати
Дата публикации 02.12.2006гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';>