This page has been robot translated, sorry for typos if any. Original content here.

Электрохимические источники тока

Примерно до 1870 г. наиболее распространенными источниками тока были электрохимические, т. е. гальванические элементы и аккумуляторы. В дальнейшем преобладающим типом источников электрического тока стали электромашинные генераторы.

Простейшими гальваническими элементами были элементы с одной жидкостью; к числу таких элементов принадлежали вольтов столб и его видоизменения — чашечный элемент Вольты и др. Всем таким генераторам тока были свойственны недостатки, усложнявшие их применение, а следовательно, и внедрение практических электротехнических устройств на базе таких генераторов.

К числу наиболее существенных недостатков следует отнести: сравнительно быстрое ослабление действия батарей, вызывавшееся, как позднее было установлено, гальванической поляризацией, малая энергоемкость, а также неудобство эксплуатации и неприспособленность батарей для транспортировки.

В большинстве гальванических элементов в качестве отрицательного электрода применялся цинк, большой расход которого определял дороговизну генерируемой энергии. Если цинк был недостаточно чистым и одержал примеси (свинец, железо и др.), то при погружении его раствор серной кислоты возникали местные токи. Это приводило к тому, что даже при разомкнутой внешней цепи цинк взаимодействовал с кислотой и растворялся.

Пока не были построены принципиально новые генераторы электрического тока, нужно было искать возможности каким-либо путем устранить хотя бы некоторые из перечисленных недостатков.

Исследования процессов в гальванических элементах привели к открытию явления гальванической поляризации (А. С. Беккерель, 1826 г.) которое объяснялось скоплением пузырьков водорода у медного электрода.

Антуан Сезар БеккерельПоляризация электродов оказывает сильное влияние на постоянство действия элемента. Для устранения поляризации были испробованы различные средства: механическое удаление с медного электрода газа по мере его образования, придание электроду шероховатой поверхности, чтобы пузырькам водорода труднее было приставать, и т. д.

Однако действительно практическое решение было достигнуто поглощением водорода в результате химической реакции, возникшей в элементе при участии второй жидкости, служащей деполяризатором.

В 1829 г. Беккерель дал принципиальную конструкцию гальванического элемента с двумя жидкостями: сосуд (разделялся пористой перегородкой (например, из слабо обожженной глины) на две части, каждая на которых вмещала одну из жидкостей и один электрод.

В первых образцах нового гальванического элемента применялись две жидкости: азотная кислота и раствор поташа, а один доз электродов изготавливался из платины.

Позднее Беккерель построил более дешевый элемент, в котором в одну половину сосуда был налит раствор поваренной соли и погружен цинковый электрод, a в другую половину сосуда, отделенную пористой перегородкой, — раствор медного купороса, в который погружался медный электрод.

С этого времени (1829 г.) гальванические элементы с одной жидкостью почти выходят из употребления. В короткий промежуток времени появился ряд усовершенствованных конструкций гальванических элементов с двумя жидкостями. Для придания цинковому электроду большей устойчивости и устранения вредного действия примесей, могущих содержаться в цинке, было введено амальгамирование поверхности цинкового электрода.

Другим направлением в области создания электрохимических источников тока было построение электрических аккумуляторов, или «вторичных элементов», как они долгое время назывались.

Принципиальная возможность аккумулирования электрической энергии была установлена еще в начале XIX в., но только в 1854 г. немецкий врач В. И. Зинстеден открыл способ аккумулирования больших количеств электрической энергии, наблюдая явление поляризации, отличное от обычной гальванической поляризации.

Это явление заключалось в том, что при пропускании тока через свинцовые электроды, погруженные в разведенную серную кислоту, положительный электрод покрывался двуокисью свинца. При замыкании электродов такого элемента накоротко получался сильный ток в течение более продолжительного времени, чем действовал обычный ток поляризации; такое явление в цепи наблюдалось до тех пор, пока вся двуокись свинца не израсходовалась.

В 1859 г. француз Гастон Планте, по-видимому независимо от Зинстендена, наблюдал то же явление и на его основе построил свинцовый аккумулятор. Очень скоро было установлено, что чем более пористыми будут свинец на одном электроде и двуокись свинца на другом, тем больший запас электрической энергии будет содержать аккумулятор. Эта пористость достигалась с течением времени продолжительным повторением зарядки и разряда аккумулятора; только примерно через 500 ч работы аккумулятора происходило достаточное формирование его пластин.

Искусственное формирование аккумуляторных пластин было введено в практику в 80-х годах, и это способствовало значительному улучшению действия аккумуляторов.

Источник информации: О. Н. Веселовский, Я. А. Шнейберг Очерки по истории электротехники. Учебное издание. М.: Издательство МЭИ, 1993.


Created/Updated: 25.05.2018

stop war in Ukraine

ukrTrident

stand with Ukraine