This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.

Сурьма - ядовитый металл (полуметалл),
используемый в металлургии, медицине и технике
Токсические и ядовитые камни и минералы

Сурьма (латинское Stibium, обозначается символом Sb) - элемент с атомным номером 51 и атомным весом 121,75. Является элементом главной подгруппы пятой группы, пятого периода периодической системы химических элементов Д.И. Менделеева. Сурьма - металл (полуметалл) серебристо-белого цвета с синеватым оттенком, грубозернистого строения. В обычном виде образует кристаллы, обладающие металлическим блеском и имеющие плотность 6,68 г/см3.

Напоминая по внешнему виду металл, кристаллическая сурьма отличается хрупкостью и хуже проводит тепло и электрический ток, чем обычные металлы. В природе известны два стабильных изотопа 121Sb (изотопная распространенность 57,25%) и 123Sb (42,75%). На фото - Сурьма. Округ Туларе, шт. Калифорния. США. Фото: © А.А. Евсеев.

C сурьмой человечество знакомо издревле: в странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. Соединение сурьмы - сурьмяный блеск (природный Sb2S3) применяли для окраски в черный цвет бровей и ресниц. В Древнем Египте порошок из этого минерала назывался mesten или stem, для древних греков сурьма была известна под именем stími и stíbi, отсюда латинский stibium.

Металлическая сурьма в виду своей хрупкости применяется редко, однако в связи с тем, что она увеличивает твердость других металлов (олова, свинца) и не окисляется при обычных условиях, металлурги нередко вводят ее в качестве легирующего элемента в состав различных сплавов. Сплавы с использованием пятьдесят первого элемента применяются широко в самых различных областях: для аккумуляторных пластин, типографских шрифтов, подшипников (баббиты), экранов для работы с источниками ионизирующих излучений, посуды, художественного литья и т. п.

Чистую металлическую сурьму в основном используют в полупроводниковой промышленности - для получения антимонидов (солей сурьмы) с полупроводниковыми свойствами. Сурьма входит в состав лекарственных синтетических препаратов. Широкое применение нашли и соединения сурьмы: сульфиды сурьмы используются при производстве спичек и в резиновой промышленности. Оксиды сурьмы применяются при производстве огнеупорных соединений, керамических эмалей, стекла, красок и керамических изделий.

Сурьма относится к микроэлементам (содержание в организме человека 10–6% по массе). Известно, что сурьма образует связи с атомами серы, что обусловливает ее высокую токсичность. Сурьма проявляет раздражающее и кумулятивное действие, накапливается в щитовидной железе, угнетая ее функцию и вызывая эндемический зоб. Пыль и пары вызывают носовые кровотечения, сурьмяную "литейную лихорадку", пневмосклероз, поражают кожу, нарушают половые функции. Тем не менее, еще с древних времен соединения сурьмы применяются в медицине как ценные лекарственные средства.

Биологические свойства

Сурьма относится к микроэлементам, она обнаружена во многих живых организмах. Установлено, что содержание пятьдесят первого элемента (на сто грамм сухого вещества) составляет в растениях 0,006 мг, в морских животных 0,02 мг, в наземных животных 0,0006 мг. В человеческом организме содержание сурьмы всего 10–6% по массе. Поступление пятьдесят первого элемента в организм животных и человека происходит через органы дыхания (с вдыхаемым воздухом) или желудочно-кишечный тракт (с пищей, водой, медикаментами), среднесуточное поступление составляет около 50 мкг. Основными депо накопления сурьмы являются щитовидная железа, печень, селезенка, почки, костная ткань, также происходит накопление в крови (в эритроцитах накапливается преимущественно сурьма в степени окисления +3, в плазме крови - в степени окисления +5).

Выделяется металл из организма достаточно медленно главным образом с мочой (80%), в незначительном количестве - с фекалиями. Однако физиологическая и биохимическая роль сурьмы до сих пор неизвестна и изучена слабо, поэтому данные о клинических проявлениях дефицита сурьмы отсутствуют.

Однако известны данные о предельно допустимых концентрациях элемента для человеческого организма: 10-5-10-7 грамм на 100 грамм сухой ткани. При более высокой концентрации сурьма инактивирует (препятствует работе) ряд ферментов липидного, углеводного и белкового обмена (возможно в результате блокирования сульфгидрильных групп).

Дело в том, что сурьма и ее производные токсичны - Sb образует связи с серой (например, реагирует с SH-группами ферментов), что обусловливает ее высокую токсичность. Накапливаясь с избытком в щитовидной железе, сурьма угнетает ее функцию и вызывает эндемический зоб. При попадании в пищеварительный тракт сурьма и ее соединения не вызывают отравления, так как соли Sb (III) гидролизуются с образованием малорастворимых продуктов, которые выводятся из организма: наблюдается раздражение слизистой желудка, наступает рефлекторная рвота, причем почти все количество принятой сурьмы выбрасывается вместе с рвотными массами.

Однако после приемов значительных количеств сурьмы или при длительном ее применении могут наблюдаться поражения желудочно-кишечного тракта: язвы, гиперемия, набухание слизистой. Cоединения сурьмы (III) более токсичны, чем сурьмы (V) - биодоступны. Порог восприятия привкуса в воде - 0,5 мг/л. Смертельная доза для взрослого человека - 100 мг, для детей - 49 мг. ПДК Sb в почве 4,5 мг/кг.

В воде сурьма относится ко второму классу опасности, имеет ПДК 0,005 мг/л, установленное по санитарно-токсикологическому ЛПВ. В природных водах норматив составляет 0,05 мг/л. В сточных промышленных водах, сбрасываемых на очистные сооружения, имеющие биофильтры, содержание сурьмы не должно превышать 0,2 мг/л.

Пыль и пары вызывают носовые кровотечения, сурьмяную "литейную лихорадку", пневмосклероз, поражают кожу, нарушают половые функции. Для аэрозолей сурьмы ПДК в воздухе рабочей зоны 0,5 мг/м3, в атмосферном воздухе 0,01 мг/м3. При втирании в кожу сурьма вызывает раздражение, эритемы, пустулы, подобные оспенным.

Подобного рода повреждения могут наблюдаться в профессиях, имеющих дело с сурьмой: у эмалировщиков (применение окиси сурьмы), у печатников (работа с печатными сплавами, британский металл). При хронической интоксикации организма сурьмой необходимо принять профилактические меры, ограничить ее поступление, провести симптоматическое лечение, возможно использование комплексообразователей.

Тем не менее, несмотря на отрицательные факторы, связанные с токсичностью сурьмы, она, как и ее соединения применяется в медицине. Еще в XV-XVI вв. препараты сурьмы применяли как лекарственные средства, главным образом как отхаркивающие и рвотные. Чтобы вызвать рвоту, пациенту давали вино, выдержанное в сурьмяном сосуде. Одно из соединений сурьмы, KC4H4O6(SbO) * H2O, так и называется рвотным камнем. Механизм действия такого препарата описан нами выше.

Полудрагоценные камни, Самоцветы
Сурьма. Монарх р-к (Sb), Гравелотт, Лимпопо пров. Ю. Африка. Фото: © А.А. Евсеев.

Cоединения сурьмы применяются в медицине как лекарственные средства для лечения паразитических болезней (сурьма обладает паразитотропным действием) человека и животных (сонной болезни, распространяемой мухами це-це; кала-азара, или тропической спленомегалии - увеличение селезенки; филяриозов, вызываемых нитевидным червем, живущим в лимфатической системе). В последнее время делаются попытки применения препаратов сурьмы при сифилисе, подобно новарсенолу. Cурьма вводится в вену (необходима осторожность).

Интересные факты

Один из современнейших методов "использования" сурьмы поступил на вооружение криминалистов. Дело в том, что пуля нарезного оружия оставляет за собой (трассирующий) вихревой поток - "след", в котором имеются доли ряда элементов - свинца, сурьмы, бария, меди. Оседая, они оставляют на поверхности невидимый "отпечаток".

Однако невидимыми эти частицы были лишь до недавнего времени, современные разработки позволяют определить наличие частиц и направление полета пули. Происходит это следующим образом: на поверхность накладывают полоски влажной фильтровальной бумаги, затем их помещают в ускоритель элементарных частиц (синхрофазатрон) и подвергают бомбардировке нейтронами. В результате "обстрела" часть атомов, перешедших на бумагу (в том числе атомы сурьмы), переходят в нестойкие радиоактивные изотопы, а степень их активности позволяет судить о содержании этих элементов в пробах и таким образом определить траекторию и длину полета пули, характеристику пули, оружия и боеприпасов.

Многие полупроводниковые материалы, содержащие сурьму, получены в условиях невесомости на борту околоземной космической орбитальной научной станции "Салют-6" и "Скайлэб".

Автор "Похождений бравого солдата Швейка" в рассказе "Камень жизни" излагает одну из версий происхождения названия "антимоний". В 1460 году настоятель Штальгаузенского монастыря в Баварии отец одного монастыря искал философский камень (амальгаму золота и рути – "белое золото", выпаривал до золота). В те далекие времена вряд ли удалось бы отыскать хоть один монастырь, в кельях и подвалах которого не шла бы алхимическая работа (Испания, г. Альмаден, крупнейшее в мире месторождение промышленной красной киновари – сульфида ртути, спутника месторождений сурьмы, сухая вулканическая возгонка на раскаленных батолитах). На фото ниже – месторождения типа "киноварь" и киноварь – спутник сурьмы в местрождениях.

Полудрагоценные камни, Самоцветы
Черный антимонит – сульфид сурьмы, со спутниками – серый халцедон
и красная киноварь в друзе, Никитовка, Донецкая обл., юго-восток Украины

Полудрагоценные камни, СамоцветыПолудрагоценные камни, Самоцветы

В одном из опытов игумен смешал в тигле пепел Жанны Д'Арк ("Орлеанской Девственницы" – гордости Франции) с пеплом и двойным количеством земли, взятой с места сожжения (киноварь). Эту "адскую смесь" монах стал нагревать. После упаривания с углем получилось тяжелое темное вещество с металлическим блеском (ртуть). Результат огорчил настоятеля - в книге говорилось о том, что заветный "философский камень" должен быть невесом и прозрачен (ошибки перевода – дорогим и залотистого цвета).

Разочаровавшись в "еретической науке", Леонардус выбросил полученное вещество на монастырский двор (с огарками - антимонитом). Вскоре он заметил, что свиньи охотно лижут выброшенный им "камень" (огарок) и быстро жиреют. Решив, что им открыто питательное вещество, которым можно накормить голодных, монах приготовил новую порцию "камня жизни", растолок его и этот порошок добавил в кашу, которой питались его тощие братья во Христе. На следующий день сорок монахов монастыря умерли в страшных мучениях. Раскаиваясь в содеянном, настоятель проклял опыты, а "камень жизни" переименовал в антимониум, то есть средство "против монахов". За достоверность рассказа ручаться не стоит, так же, как и за автора данной версии.

Химики средневековья Западной Европы (Испания) обнаружили, что в расплавленной сурьме часто растворяются почти все металлы (элемент "философского камня-II" – после ртути и ее амальгам). Сурьма - металл, пожирающий другие металлы, - "химический хищник". Может быть, подобные рассуждения и привели к символическому изображению сурьмы в виде фигуры волка с открытой (разверстой) пастью (ожоги химического производства сурьмы - "Адские или Дьяволовы пасти" г. Альмаден, Испания, Католической церкви Его Величества Короля Испании).

В арабской литературе свинцовый и сурьмяный блеск называли аль-каххаль (грим), алко(г)оль, алкофоль. Считалось, что косметические и лечебные средства для глаз содержат в себе таинственный дух (джинн), отсюда, вероятно, алкоголем стали называть летучие жидкости.

Всем знакомо выражение "насурьмянить брови" (наложение грима на лицо), которое ранее обозначало косметическую операцию с использованием порошка сернистой сурьмы Sb2S3. Дело в том, что соединения сурьмы имеют разную расцветку: одни черного цвета, другие - оранжево-красного. Еще в незапамятные времена арабы торговали в странах Востока краской для подведения бровей, в составе которой находилась сурьма. Автор романа "Самвел" подробно описывает технику этой косметической операции: "Юноша достал из-за пазухи кожаную сумочку, взял тонкую заостренную золотую палочку, поднес к губам, подышал на нее, чтобы она сделалась влажной, и опустил в порошок. Палочка покрылась тонким слоем черной пыли. Он начал накладывать сурьму на глаза". Во время археологических раскопок древних захоронений на территории Армении были обнаружены все выше описанные косметические принадлежности: тонкая заостренная золотая палочка и крохотная шкатулка из полированного мрамора (кража на Ваке в Испании, средние века, Западная Европа).

История

Имя открывателя сурьмы неизвестно, так как этот металл известен человеку с доисторических времен. Изделия из сурьмы и ее сплавов (в частности, сурьмы с медью) использовались человеком на протяжении многих тысячелетий, сурьмяная бронза, употреблявшаяся в период Вавилонского царства, состояла из меди и добавок олова, свинца и сурьмы. Археологические находки подтвердили предположения о том, что в Вавилоне еще за 3 тысячи лет до н.э. (совместно с ее геологическим спутником – красной киноварью) из сурьмы делали сосуды, например, хорошо известно описание фрагментов вазы из металлической сурьмы, найденной в Телло (южная Вавилония). Обнаружены и другие предметы из сурьмы, в частности в Грузии, датируемые I тысячелетием до н. э. Для изготовления изделий использовались и сплавы сурьмы со свинцом, и необходимо отметить, что в древности металлическая сурьма не считалась самостоятельным металлом, и ее принимали за свинец (имитатора переходной химической производственной формы ртути – афродизиака для женщин).

Что касается соединений сурьмы, то наиболее известен "сурьмяный блеск" - сернистая сурьма Sb2S3, которая была известна во многих странах. В Индии, Междуречье, Египте, Средней Азии и других азиатских странах из этого минерала делали тонкий блестящий черный порошок, применявшийся для косметических целей, особенно для гримировки глаз "глазная мазь". Плиний Старший называет сурьму stimmi и stibi - косметические и фармацевтические средства для гримирования и лечения глаз. В греческой литературе Александрийского периода эти слова означают косметическое средство черного цвета (черный порошок).

Что касается русского слова "сурьма", то, вероятнее всего, оно имеет тюркское происхождение - surme. Первоначальное значение этого термина было - мазь, грим, притирание. Это подтверждается сохранением до нашего времени данного слова во многих восточных языках: турецком, фарсидском, узбекском, азербайджанском и других. По другим данным, "сурьма" происходит от персидского "сурме" - металл. В русской литературе начала XIX века употребляются слова сурьмяк (Захаров, 1810), сюрма, сюрьма, сюрмовой королек и сурьма.

Нахождение в природе

Несмотря на то, что содержание сурьмы в земной коре сравнительно невелико - среднее содержание (кларк) 5∙10-5% (500 мг/т) - она была известна в глубокой древности. Это не удивительно, ведь сурьма входит в состав примерно ста минералов, самый распространенный из которых сурьмяный блеск Sb2S3 - минерал свинцово-серого цвета с металлическим блеском (он же антимонит, он же стибнит), содержащий более 70% сурьмы и служащий основным промышленным сырьем для ее получения. Основная масса сурьмяного блеска образуется в гидротермальных месторождениях, где его скопления создают залежи сурьмяной руды в форме жил и тел пластообразной формы. В верхних частях рудных тел, близ поверхности земли, сурьмяный блеск подвергается окислению, образуя ряд минералов, а именно: сенармонтит и валентит Sb2O3 (оба минерала одного и того же химического состава, содержат 83,32% сурьмы и 16,68% кислорода); сервантит (сурьмяная охра) Sb2O4; стибиоканит Sb2O4∙nH2O; кермезит Sb2S2O. В редких случаях сурьмяные руды (благодаря сродству с серой) представлены сложными сульфидами сурьмы, меди, ртути, свинца, железа (бертьерит FeSbS4, джемсонит Pb4FeSb6S14, тетраэдрит Cu12Sb4S13, ливингстонит HgSb4S8 и другие), а также окислами и оксихлоридами (сенармонтит, надорит PbClSbO2) сурьмы.

Содержание сурьмы в изверженных эффузивных породах ниже, чем в осадочных породах (вулканическая возгонка по трещинам от раскаленной магмы на катализаторе из кальдеры - воде). В осадочных наиболее высокие концентрации сурьмы отмечаются в глинистых сланцах (1,2 г/т), бокситах и фосфоритах (2 г/т) и самые низкие в известняках и песчаниках (0,3 г/т). Повышенные количества сурьмы установлены в золе углей (конфликтует водой с киноварью – киноварь формируется на мышьяке).

В природных соединениях сурьма с одной стороны проявляет свойства металла и является типичным халькофильным элементом, образуя антимонит. В тоже время, сурьма обладает свойствами металлоида, проявляющимися в образовании различных сульфосолей - буланжерита, тетраэдрита, бурнонита, пираргирита и прочих. С рядом металлов (палладий, мышьяк) сурьма способна создавать интерметаллические соединения. Кроме того, в природе наблюдается изоморфное замещение сурьмы и мышьяка в блеклых рудах и геокроните Pb5(Sb, As)2S8 и сурьмы и висмута в кобеллите Pb6FeBi4Sb2S16 и др.

Стоит отметить, что сурьма встречается и в самородном состоянии. Самородная сурьма - минерал состава Sb, иногда с незначительной примесью серебра, мышьяка, висмута (до 5%). Встречается в виде зернистых масс (кристаллизующихся в тригональной системе), натечных образований и ромбоэдрических пластинчатых кристаллов.

Самородная сурьма имеет металлический блеск, оловянно-белый цвет с желтой побежалостью. Образуется при дефиците серы в низкотемпературных сурьмяных, сурьмяно-золото-серебряных и медно-свинцово-цинково-сурьмяно-серебряно-мышьяковых, а также высокотемпературных пневматолитово-гидротермальных сурьмяно-серебро-вольфрамовых месторождениях (в последних содержание сурьмы может достигать кристаллических значений - Сейняйоки в Финляндии – кристаллический щит сурьмы).

Содержание сурьмы в пластовых рудных телах от 1 до 10%, в жильных - от 3 до 50%, среднее содержание - от 5 до 20%, порою более. Пластовые рудные тела образуются при посредстве низкотемпературных гидротермальных растворов путем заполнения трещин в горных породах, а также вследствие замещения последних минералами сурьмы. Основное промышленное значение имеют два типа месторождений: пластовые тела, линзы, гнезда и штокверки в выдержанных плащеобразных залежах, образующихся в результате метасоматического замещения кремнеземом и соединениями сурьмы известняков под сланцевым экраном (в Китае - Сикуаншань, в СНГ - Кадамджай, Терексай, Джижикрут в Средней Азии). Второй тип месторождений - системы крутопадающих секущих кварцево-антимонитовых жил в сланцах (в СНГ - Тургайское, Раздольнинское, Сарылах и др.; в Южной Африке - Гравелот и др.). Третье – вертикальные трещины (Донецкая обл., юго-восток Украины, Никитовка). Богатые месторождения сурьмяных минералов обнаружены на территории Китая, Боливии, Японии, США, Мексики, ряда африканских стран.

Применение

В связи с хрупкостью металлическая сурьма применяется редко, но, так как она увеличивает твердость других металлов (например, олова и свинца) и не окисляется при обычных условиях, металлурги вводят ее в состав различных сплавов. Общее число сплавов, содержащих пятьдесят первый элемент, приближается к двумстам. Легирование ряда сплавов сурьмой было известно еще в средние века: "Если путем сплавления определенная порция сурьмы прибавляется к олову, получается типографский сплав (гарт), из которого изготовляется шрифт, применяемый теми, кто получает книги".

Невероятно, но такой сплав - гарт (с укр. яз. – "закалка", - сурьма, олово и свинец), содержащий от 5 до 30% Sb - непременный атрибут типографии! В чем же уникальность сплава, прошедшего сквозь века? Расплавленная сурьма, в отличие от других металлов (кроме висмута и галлия), при затвердевании расширяется, увеличивает свой объем. Таким образом, при отливке шрифта типографский сплав, содержащий сурьму, застывая в литейной матрице, расширяется, благодаря чему плотно ее заполняет и воспроизводит зеркальное изображение, которое переносится на бумагу. Кроме того, сурьма придает типографскому сплаву твердость и износостойкость, что важно при многократном использовании шаблона (матрицы, типографской формы).

Сплавы свинца с сурьмой, применяемые в химическом машиностроении (для облицовки ванн и другой кислотоупорной аппаратуры) имеют высокую твердость и коррозионную стойкость. Наиболее известный сплав гартблей (содержание Sb от 5 до 15%) применяется для изготовления труб, по которым транспортируют агрессивные жидкости. Из этого же сплава делают оболочки телеграфных, телефонных и электрических кабелей, электроды, пластины аккумуляторов, сердечники пуль, дробь, шрапнель. Широкое применение (станкостроение, железнодорожный и автомобильный транспорт) нашли подшипниковые сплавы (баббиты), содержащие олово, медь, свинец и сурьму (Sb от 4 до 15%), они обладают достаточной твердостью, большим сопротивлением истиранию, высокой коррозионной стойкостью. Также сурьма добавляется к металлам, предназначенным для тонких и хрупких отливок.

Чистую сурьму используют для получения антимонидов (AlSb, CaSb, InSb), а так же, как добавку в производстве полупроводниковых соединений. Такой сурьмой легируют (всего 0,000001%) важнейший полупроводниковый металл - германий, чтобы улучшить его качества. Ряд ее соединений (в частности, с галлием и индием) - полупроводники. Сурьма применяется в полупроводниковой промышленности не только как леганд. Сурьму используют и при производстве диодов (AlSb и CaSb), инфракрасных детекторов, устройств с эффектом Холла. Антимонид индия применяют для построения датчиков Холла, для преобразования неэлектрических величин в электрические, в счетно-решающих устройствах, в качестве фильтра и регистратора инфракрасного излучения. Благодаря большой ширине запрещенной зоны AlSb применяют для построения солнечных батарей.

Разнообразна "деятельность" и соединений сурьмы. Например, трехокись (оксид) сурьмы (Sb2O3) применяется в основном как пигмент для красок, глушитель для эмали, протрава в текстильной промышленности, в производстве огнеупорных соединений и красок, ее используют также для изготовления оптического (просветленного) стекла, керамических эмалей.

Пятиокись сурьмы (Sb2O5) находит широкое применение в изготовление фармацевтических препаратов, в производстве стекла, керамики, красок, в текстильной и резиновой промышленности, в качестве составной части люминесцентных ламп дневного света (в люминесцентных лампах галофосфатом кальция активируют Sb). Трехсернистую сурьму используют в производстве спичек и в пиротехнике. Пятисеринстую сурьму применяют для вулканизации каучука (у "медицинской" резины, в состав которой входит Sb2S5, характерный красный цвет и высокая эластичность). Сурьма треххлористая (SbCl3) применяется для воронения сталей, чернения цинка, в медицине, в качестве протравы в текстильном производстве и как реактив в аналитической химии.

Ядовитый стибин или сурьмянистый водород SbH3 - применяется в качестве фумиганта для борьбы с насекомыми - вредителями сельскохозяйственных растений. Многие соединения сурьмы могут служить пигментами в красках, например, сурьмянокислый калий (K2O * 2Sb2O5) широко применяется в производстве керамики, краска "сурьмин", основу которой составляет трехокись сурьмы, применяется для окраски подводной части и надпалубных построек кораблей. Метасурьмянокислый натрий (NaSbO3) под названием "лейконин" используется для покрытия кухонной посуды, а также в производстве эмали и белого молочного стекла.

Производство

Сурьма довольно редкий элемент, в земной коре ее имеется не более 5∙10-5%, тем не менее, известно свыше ста минералов, содержащих этот элемент. Распространенный и имеющий полупромышленное значение минерал сурьмы (не сульфид) - сурьмяный блеск, или стибнит, Sb2S3, содержащий свыше 70% сурьмы. Остальные сурьмяные руды резко отличаются друг от друга по содержанию в них металла - от 1 до 60%. Получать металлическую сурьму из руд, в которых меньше 10% Sb, нецелесообразно. По этой причине бедные руды обогащаются.

Сульфидные (самые богатые), а также комплексные руды обогащают флотацией, а сульфидно-окисленные - комбинированными методами. Пройдя обогащение, рудный концентрат содержит от 30 до 60% Sb, такое сырье пригодно для переработки в сурьму, что и производится пирометаллургическим или гидрометаллургическим методами. В первом варианте преобразования протекают в расплаве под воздействием высокой температуры, во втором - в водных растворах соединений сурьмы и других элементов. К пирометаллургическим методам получения сурьмы относятся: осадительная, восстановительная и прямая плавка в шахтных печах. Осадительная плавка, сырьем для которой является сульфидный концентрат, основана на вытеснение сурьмы из ее сульфида железом:

Sb2S3 + 3Fe → 2Sb + 3FeS

Происходит процесс в отражательных или вращающихся барабанных печах следующим образом: железо в виде чугунной либо стальной стружки вводят непосредственно в печь, далее для образования восстановительной атмосферы, которая предотвращает потери с выходом летучего оксида сурьмы (III), в шихту добавляют древесный уголь (каменноугольную мелочь или кокс). Для ошлакования пустой породы в шихту вводят флюсы - сульфат натрия или соду. Плавка шихты происходит при постоянной температуре 1 300-1 400oC. В результате осадительной плавки образуется черновая сурьма, содержащая от 95 до 97% Sb (зависит от первоначального содержания в концентрате) и от 3 до 5% примесей - железа, золота, свинца, меди, мышьяка и других металлов, которые содержались в исходном сырье. Извлечение сурьмы из первоначального концентрата составляет от 77 до 92%.

Восстановительная плавка основана на восстановлении окислов сурьмы до металла твердым углеродом:

Sb2O4 + 4C → 2Sb + 4CO

Производится в отражательных либо коротких барабанных печах при температуре 800-1 000oС. Шихту составляют окисленная руда, древесный уголь (возможна каменноугольная пыль) и флюс (сода, поташ). Получается черновая сурьма более чистая, чем при осадительной плавке (более 99% Sb), извлечение металла из концентрата составляет 80-90%.

Прямая плавка в шахтных печах применяется для выплавки металла из окисленного или сульфидного крупнокускового сырья. Максимальная температура 1 300-1 500oС достигается горением кокса - составной части шихты, в качестве флюса выступают известняк, пиритные огарки или железная руда. Металл получается как за счет восстановления углеродом (углем) коксом Sb2O3, так и в результате взаимодействия не окислившегося антимонита с Sb2O3 при постоянном удалении SO2 из расплава печными газами. Продукты плавки (черновой металл и шлак) стекают в нижнюю часть печи и выпускаются из него в отстойник.

Другой метод получения сурьмы - гидрометаллургический находит все большее применение последнее время. Он состоит из двух стадий: обработка сырья с переводом в раствор соединений сурьмы и выделение сурьмы из этих растворов. Сложность метода заключается в том, что перевести сурьму в раствор проблематично: большинство природных соединений сурьмы в воде не растворяется. Однако нужный растворитель был найден - водный раствор сернистого натрия (120 г/л) и едкого натра (30 г/л). Сульфид и окись сурьмы переходит в раствор в виде сульфасолей и солей сурьмяных кислот. Из полученного раствора сурьму выделяют электролизом. Черновая сурьма, полученная гидрометаллургическим методом, не отличается чистотой и содержит от 1,5 до 15% примесей.

Для получения сурьмы с меньшим количеством примесей применяют пирометаллургическое (огневое) или электролитическое рафинирование. Наиболее распространенное в промышленности огневое рафинирование производится в отражательных печах. При добавлении к расплавленной черновой сурьме стибнита, примеси железа и меди образуют сернистые соединения и переходят в штейн. Мышьяк удаляют в виде арсената натрия при плавке в окислительной атмосфере (продувка воздухом) содой или поташом, при этом удаляется и сера.

При наличии благородных металлов применяют анодное электролитическое рафинирование, позволяющее сконцентрировать благородные металлы в шламе. Рафинированная сурьма содержит уже не более 0,5-0,8% чужеродных примесей. Однако и такой металл удовлетворяет не всех потребителей - для полупроводниковой промышленности, например, требуется сурьма 99,999% чистоты. В таком случае применяют кристаллофизический метод очистки - зонную плавку в атмосфере аргона, в особо ответственных случаях, зонную плавку повторяют несколько раз.

Физические свойства

Сурьма известна в кристаллической форме и трех аморфных модификациях (взрывчатая, черная и желтая). По внешнему виду кристаллическая, или серая, сурьма (ее основная модификация) - блестящий металл серебристо-белого цвета с синеватым оттенком, который тем тоньше, чем больше примесей (чистый элемент в свободном состоянии образует игольчатые кристаллы, напоминающие форму звезд).

Многие механические свойства зависят от чистоты металла. Серая сурьма кристаллизуется в тригональной (ромбоэдрической) системе (а = 0,45064 нм, z = 2, пространственная группа R3m), ее плотность 6,61-6,73 г/см3 (в жидком состоянии - 6,55 г/см3). При давлении ~5,5 ГПа ромбоэдрическая решетка серой сурьмы переходит в кубическую модификацию SbII. При давлении 8,5 ГПа - в гексагональную SbIII. Выше 28 ГПа образуется SbIV. Плавится кристаллическая сурьма при невысокой температуре - 630,5oC, кипеть расплавленная сурьма начинает при 1 634oC.

Удельная теплоемкость сурьмы при температурах 20-100o С составляет 0,210 кдж/(кг * К) или 0,0498 кал/(г *oС), теплопроводность при 20oС равна 17,6 вт/(м * К) или 0,042 кал/(см * сек *oС). Температурный коэффициент линейного расширения для поликристаллической сурьмы 11,5 * 10-6 при температуре от 0 до 100oС; для монокристалла а1 = 8,1 * 10-6, а2 = 19,5 * 10-6 при 0-400oС, удельное электросопротивление при 20oС составляет 43,045 * 10-6 см * см.

Сурьма диамагнитна, ее удельная магнитная восприимчивость равна -0,66 * 10-6. Твердость по Бринеллю для литого металла равна 325-340 Мн/м2 (32,5-34,0 кгс/мм2); модуль упругости 285-300; предел прочности 86,0 Мн/м2 (8,6 кгс/мм2). Температура перехода сурьмы в сверхпроводящее состояние 2,7 К. Серая сурьма имеет слоистую структуру, где каждый атом Sb пирамидально связан с тремя соседями по слою (межатомное расстояние 0,288 нм) и имеет трех ближайших соседей в другом слое (межатомное расстояние 0,338 нм). При обычных условиях устойчива именно эта форма сурьмы.

При резком охлаждении паров серой сурьмы образуется черная сурьма (плотность 5,3 г/см3), которая при нагреве до 400oС без доступа воздуха переходит в серую сурьму. Черная сурьма обладает полупроводниковыми свойствами. Желтая сурьма образуется при действии кислорода на жидкий стибин SbH3 и содержит незначительные количества химически связанного водорода. При нагревании, а также при освещении видимым светом желтая сурьма переходит в черную сурьму.

Взрывчатая сурьма внешне похожа на графит (плотность 5,64-5,97 г/см3) взрывается при ударе и трении. Данная модификация образуется при электролизе раствора SbCl3 в соляной кислоте при малой плотности тока, содержит связанный хлор. Взрывчатая сурьма при растирании или ударе с взрывом превращается в металлическую сурьму.

Однозначно утверждать, что сурьма - металл, нельзя. Еще средневековые алхимики причислили ее (впрочем, как и некоторые истинные металлы: цинк и висмут, например) к группе "полуметаллов", ведь они хуже ковались, а ковкость считалась основным признаком металла, кроме того, по алхимическим представлениям, каждый металл был связан с каким-либо небесным телом. К тому моменту все известные небесные тела были уже распределены (Солнце связывали с золотом, Луна олицетворяла серебро, Меркурий - ртуть, Венера - медь, Марс - железо, Юпитер - олово и Сатурн - свинец), следовательно, самостоятельных металлов, по мнению алхимиков, больше не существовало.

В отличие от большинства металлов, сурьма, во-первых, хрупка и истирается в порошок (это можно сделать в фарфоровой ступке фарфоровым пестиком), а во-вторых, хуже проводит электричество и тепло (при 0oC ее электропроводность составляет лишь 3,76% электропроводности серебра). В то же время, кристаллическая сурьма имеет характерный металлический блеск, выше 310oС становится пластичной, кроме того, монокристаллы высокой чистоты пластичны. С серной кислотой сурьма образует сульфат Sb2(SO4)3 и утверждает себя в металлическом качестве, а азотная кислота окисляет сурьму до высшего оксида, образующегося в виде гидратированного соединения xSb2O5 * уН2О, доказывая ее характер неметалла. Получается, что металлические свойства выражены у сурьмы довольно слабо, однако и свойства неметалла присущи ей далеко не в полной мере.

Химические свойства

Конфигурация внешних электронов атома сурьмы 5s25p3. В соединениях сурьма обнаруживает сходство с мышьяком, однако отличается от него выраженными металлическими свойствами, проявляет степени окисления +5, +3 и -3. В химическом отношении пятьдесят первый элемент малоактивен - на воздухе при комнатной температуре металлическая сурьма устойчива, начинает окисляться при температурах близких к точке плавления (~600oС) с образованием оксида сурьмы (III), или сурьмянистого ангидрида - Sb2O3:

4Sb + 3O2 → 2Sb2O3

выше температуры плавления сурьма загорается. Оксид сурьмы (III) - амфотерный оксид с преобладанием основных свойств, нерастворим, образует минералы. Реагирует со щелочами и кислотами, причем в сильных кислотах, например серной и соляной, оксид сурьмы (III) растворяется с образованием солей сурьмы (III), в щелочах с образованием солей сурьмянистой H3SbO3 или метасурьмянистой HSbO2 кислоты:

Sb2O3 + 2NaOH → 2NaSbO2 + Н2О

и

Sb2O3 + 6HCl → 2SbCl3 + 3H2O

При нагревании Sb2O3 выше 700oC в кислороде образуется оксид состава Sb2O4:

2Sb2O3 + O2 → 2Sb2O4

Sb2O4 одновременно содержит трех- и пятивалентную сурьму. В его структуре соединены друг с другом октаэдрические группировки [Sb(III)O6] и [Sb(V)O6]. Этот окисел сурьмы самый устойчивый.

Измельченная порошкообразная сурьма горит в атмосфере хлора, пятьдесят первый элемент активно реагирует и с другими галогенами, образуя галогениды сурьмы. С азотом и водородом у металлической сурьмы реакции не возникает, также как с кремнием и бором, углерод незначительно растворяется в расплавленной сурьме. С серой, фосфором, мышьяком и со многими металлами сурьма соединяется при сплавлении. Соединяясь с металлами, сурьма образует антимониды, например, антимонид олова SnSb, никеля Ni2Sb3, NiSb, Ni5Sb2 и Ni4Sb. Антимониды можно рассматривать как продукты замещения водорода в стибине (SbН3) атомами металла. Некоторые антимониды, в частности AlSb, GaSb, InSb, обладают полупроводниковыми свойствами.

Сурьма устойчива по отношению к воде и разбавленным кислотам. Так, например, в соляной кислоте и в разбавленной серной кислоте сурьма не растворяется. Не реагирует она и с фтористоводородной и плавиковой кислотами. Однако концентрированные соляная и серная кислоты медленно растворяют сурьму с образованием хлорида SbCl3 и сульфата Sb2(SO4)3. С концентрированной азотной кислотой образуется плохо растворимая β-сурьмяная кислота HSbO3:

3Sb + 5HNO3 → 3HSbO3 + 5NO + H2O

Сурьма растворяется в царской водке - в смеси азотной и винной кислот. Растворы щелочей и NH3 на сурьму не действуют, расплавленные щелочи растворяют сурьму с образованием антимонатов.

При нагревании с нитратами или хлоратами щелочных металлов порошкообразная сурьма со вспышкой образует соли сурьмяной кислоты. Практический интерес представляют труднорастворимые соли сурьмяной кислоты - антимонаты (MeSbO3 * 3H2O, где Me - Na, К) и соли не выделенной метасурьмянистой кислоты - метаантимониты (MeSbO2 * 3H2O), обладающие восстановительными свойствами. Антимонаты (III) щелочных металлов, в особенности калия, растворимы в воде, в отличие от остальных антимонатов.

При нагревании на воздухе окисляются до антимонатов (V). Известны метаантимонаты (III), например КSbО2, ортоантимонаты (III), как Na3SbO3, и полиантимонаты, например NaSb5O8, Na2Sb4O7. Для редкоземельных элементов характерно образование ортоантимонатов LnSbO3, а также Ln3Sb5O12. Антимонаты никеля, марганца - катализаторы в органическом синтезе (реакции окисления и поликонденсации), антимонаты редкоземельных элементов - люминофоры.

Из важных соединений сурьмы, кроме оксида (III) выделяют также: гидрид (стибин) SbН3 - бесцветный ядовитый газ, образующийся действием HCl на антимониды магния или цинка или солянокислого раствора SbCl3 на NaBH4. Стибин медленно разлагается при комнатной температуре на сурьму и водород, процесс значительно ускоряется при нагреве до 150oC; он окисляется, горит на воздухе; мало растворим в воде; используют для получения сурьмы высокой чистоты. Другое важное соединение пятьдесят первого элемента - оксид сурьмы (V) или сурьмяный ангидрид, Sb2O5 (желтые кристаллы, растворяется в воде, образуя сурьмяную кислоту) обладает главным образом кислотными свойствами.

Что интересно, низший оксид сурьмы (Sb2O3) называют сурьмянистым ангидридом, хотя это утверждение неверно, ведь ангидрид является кислотообразующим окислом, а у Sb(OH)3, гидрата Sb2O3, основные свойства явно преобладают над кислотными. Таким образом, свойства низшего окисла сурьмы говорят о том, что сурьма - металл. Однако, высший окисел сурьмы Sb2O5 - это действительно ангидрид с четко выраженными кислотными свойствами, что говорит в пользу того, что сурьма все же - неметалл. Получается, что дуализм, наблюдаемый в физических характеристиках сурьмы, так же прослеживается и в ее химических свойствах сурьмы.

Полудрагоценные камни, Самоцветы
Антимонит. Округ Уайт-Кэпс Майн, шт. Невада, США. Фото: © А.А. Евсеев.

С использованием материалов веб-сайта http://i-Think.ru/

 

ДОПОГ 6.1 Полудрагоценные камни, Самоцветы
Токсичные вещества (яд)
Риск отравления при вдыхании, контакте с кожей или проглатывании. Составляют опасность для водной окружающей среды или канализационной системы
Использовать маску для аварийного оставления транспортного средства
Белый ромб, номер ДОПОГ, черный череп и скрещенные кости

 

ДОПОГ 8 Полудрагоценные камни, Самоцветы
Коррозийные (едкие) вещества
Риск ожогов в результате разъедания кожи. Могут бурно реагировать между собой (компоненты), с водой и другими веществами. Вещество, что разлилось / рассыпалось, может выделять коррозийную пару.
Составляют опасность для водной окружающей среды или канализационной системы
Белая верхняя половина ромба, черная - нижняя, равновеликие, номер ДОПОГ, пробирки, руки

 

Наименование особо опасного при транспортировке груза Номер
ООН
Класс
ДОПОГ
СУРЬМА – ПОРОШОК 2871 6.1
Сурьма пятифтористая СУРЬМЫ ПЕНТАФТОРИД 1732 8
СУРЬМЫ ЛАКТАТ 1550 6.1
СУРЬМЫ ПЕНТАФТОРИД 1732 8
СУРЬМЫ ПЕНТАХЛОРИД ЖИДКИЙ 1730 8
СУРЬМЫ ПЕНТАХЛОРИДУ РАСТВОР 1731 8
СУРЬМЫ СОЕДИНЕНИЕ НЕОРГАНИЧЕСКОЕ ЖИДКОЕ, Н.З.К. 3141 6.1
СУРЬМЫ СОЕДИНЕНИЕ НЕОРГАНИЧЕСКОЕ ТВЕРДОЕ, Н.З.К. 1549 6.1
СУРЬМЫ ТРИХЛОРИД ТВЕРДЫЙ 1733 8
СУРЬМЫ-КАЛИЯ ТАРТРАТ 1551 6.1

 
- без знаков " ' (веб-страницы)
  • Введите запрос в БД (без окончания и пр.) - кимберлит(овый), метеор(ит)
  • Нажмите "Поиск" чтобы увидеть результаты поиска по Вашему запросу

Ядовитые и радиоактивные опасные камни и минералы

** - ядовитые камни и минералы (обязательная проверка в химлаборатории + явное указание на ядовитость)
** - радиоактивные камни и минералы (обязательная проверка на штатном дозиметре + запрет на открытые продажи в случае радиоактивности свыше 24 миллирентген / час + дополнительные меры защиты населения)
Все редкие камни подлежат обязательной проверке на штатном дозиметре на допустимый уровень радиации и в химлаборатории на отсутствие ядовитых и испаряющихся компонентов, опасных для человека и окружающей среды

  1. Адамин *
  2. Аннабергит * Эритрин *
  3. Антимонит *
  4. Арсенолит **
  5. Арсенопирит **
  6. Аурипигмент **
  7. Байльдонит *
  8. Берилл **
  9. Бетафит **
  10. Биллиетит **
  1. Бисмутинит *
  2. Брейтгауптит *
  3. Витерит *
  4. Гадолинит **
  5. Галит **
  6. Геокронит *
  7. Глаукодот *
  8. Деклуазит * Моттрамит *
  9. Иорданит *
  10. Карнотит **
  1. Киноварь **
  2. Кобальтин *
  3. Коттунит *
  4. Лироконит *
  5. Марказит *
  6. Монацит *
  7. Нашатырь *
  8. Никелин *
  9. Отенит **
  10. Пироморфит *
  11. Пирохлор *
  1. Прустит *
  2. Раммельсбергит *
  3. Реальгар **
  4. Ртуть *
  5. Сенармонтит *
  6. Сера *
  7. Скуттерудит *
  8. Стронцианит **
  9. Сурьма *
  10. Тетраэдрит *
  11. Торианит **
  1. Торит **
  2. Уранинит **
  3. Фармаколит *
  4. Халькозин *
  5. Хатчинсонит *
  6. Целестин **
  7. Циркон **
  8. Эвксенит **
  9. Энаргит *
  10. Эшинит **
  11. Конихальцит

 


Created/Updated: 09.02.2024

stop war in Ukraine

ukrTrident

stand with Ukraine