special
  •  #StandWithUkraine Ukraine flag |
  • ~498940+1240
     Enemy losses on 820th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2158990

САМОВОЗБУЖДАЮЩИЙСЯ ИСТОЧНИК ЭЛЕКТРОЭНЕРГИИ НА БИОХИМИЧЕСКОЙ ОСНОВЕ

САМОВОЗБУЖДАЮЩИЙСЯ ИСТОЧНИК ЭЛЕКТРОЭНЕРГИИ НА
БИОХИМИЧЕСКОЙ ОСНОВЕ

Имя изобретателя: Ренато Алессандро ОЛИВЕТИ
Имя патентообладателя: ИНГ. АЛЕССАНДРО ОЛИВЕТИ С.р.л.
Адрес для переписки: 129010, Москва, ул. Большая Спасская 25, стр.3, ООО "Городисский и Партнеры", Емельянову Е.И.
Дата начала действия патента: 1995.01.18

Изобретение относится к источникам тока на биохимической основе.

Техническим результатом изобретения является создание источника тока с улучшенными характеристиками. Согласно изобретению самовозбуждающийся источник электроэнергии на биохимической основе содержит внутри контейнера для электролита анод с покрытием из биохимической смеси, первый электрод и второй электрод, электроизолированные друг от друга и погруженные в электролит. Кроме того, предусмотрен электростимулятор, присоединенный между анодом и первым электродом. Нагрузка потребителя может быть присоединена между вторым электродом и анодом.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к самовозбуждающемуся источнику электроэнергии на биохимической основе.

Как известно, используемые в настоящее время электрические батареи основаны на обратимости электролиза и обычно требуют использования материалов, относящихся к сильно загрязняющим окружающую среду, таких как материал свинцовых пластин и кислоты для электролитов.

Помимо этого чисто экологического аспекта известные в настоящее время батареи, даже изготовленные по наиболее передовой технологии, обычно имеют большой вес и требуют значительных затрат.

Другой недостаток заключается в том, что современные батареи обычно отличаются ограниченным сроком службы и для своей зарядки требуют длительного периода времени.

Задача изобретения состоит в решении вышеуказанных проблем путем создания источника электроэнергии нового типа, основанного на совершенно другом принципе выработки энергии, с практическим использованием биохимических явлений для генерации электрической энергии с возможностью непрерывно регенерировать источник без его перезарядки, как это требуется в устройствах, известных из предшествующего уровня техники.

В рамках решаемой задачи конкретная цель изобретения состоит в создании источника электроэнергии, представляющего собой новый, альтернативный нефти источник энергии, не требующий применения экологически вредных элементов.

Другая цель изобретения заключается в создании источника энергии, отличающегося повышенным сроком службы и меньшим весом по сравнению с обычными электрическими батареями.

Еще одна цель настоящего изобретения состоит в создании источника электроэнергии, который может быть легко изготовлен из обычных промышленных материалов и элементов, оставаясь при этом конкурентоспособным с экономической точки зрения.

Перечисленные и иные цели изобретения, рассматриваемые ниже, достигаются в соответствии с изобретением созданием самовозбуждающегося источника электрической энергии на биохимической основе, отличающегося тем, что он содержит внутри контейнера для электролита анод, покрытый биохимическим соединением, первый электрод и второй электрод, электрически изолированные один от другого и погруженные в электролит, а и электростимулятор, присоединенный между анодом и первым электродом, при этом нагрузка включена между вторым электродом и анодом.

Дополнительные характеристики и преимущества изобретения станут понятными из последующего подробного описания примера осуществления самовозбуждающегося источника электроэнергии на биохимический основе, иллюстрируемого чертежами, на которых представлено следующее:

САМОВОЗБУЖДАЮЩИЙСЯ ИСТОЧНИК ЭЛЕКТРОЭНЕРГИИ НА БИОХИМИЧЕСКОЙ ОСНОВЕ. Патент Российской Федерации RU2158990

фиг. 1 - вид в разрезе источника электроэнергии, выполненного согласно изобретению

САМОВОЗБУЖДАЮЩИЙСЯ ИСТОЧНИК ЭЛЕКТРОЭНЕРГИИ НА БИОХИМИЧЕСКОЙ ОСНОВЕ. Патент Российской Федерации RU2158990

Фиг. 2 - вид с частичным вырезом, иллюстрирующий форму анода

САМОВОЗБУЖДАЮЩИЙСЯ ИСТОЧНИК ЭЛЕКТРОЭНЕРГИИ НА БИОХИМИЧЕСКОЙ ОСНОВЕ. Патент Российской Федерации RU2158990

Фиг. 3 - схематичное представление выпрямителя на биохимической основе

САМОВОЗБУЖДАЮЩИЙСЯ ИСТОЧНИК ЭЛЕКТРОЭНЕРГИИ НА БИОХИМИЧЕСКОЙ ОСНОВЕ. Патент Российской Федерации RU2158990

Фиг. 4 - схематичное представление другого примера выполнения источника электроэнергии
в соответствии с изобретением

Фиг. 5 - вид в разрезе контейнера;

Фиг. 6 - вид сбоку пластин, образующих катод, анод и электрод-возбудитель

Фиг. 7 - вид сбоку пластин с пространственным разнесением отдельных элементов

Фиг. 8 - пространственное представление пластин, раздвинутых одна относительной другой.

Показанный на фиг. 1 и 2 самовозбуждающийся источник электроэнергии на биохимической основе изобретения содержит контейнер 1, внутри которого находится электролит 2, предпочтительно представляющий собой полужидкий раствор, состоящий из чистого ацетата никеля в 70% дважды перегнанной воды.

Внутри контейнера 1 размещен анод, в целом обозначенный цифрой 3 и состоящий из пластины 4 из чистого никеля, на сторонах которого нанесено смолистое биохимическое соединение 5. Биологическое соединение представляет собой латекс молочая, переведенный в смолистое состояние в коллоидном растворе, содержащем 10% окиси алюминия и 30% чистого ацетата никеля.

Биохимическое соединение нанесено на поверхность панелей 6, имеющих отверстия 7 и наложенных на поверхность пластины 4.

При сборке панели прессуют примерно в течение 12 часов, в результате чего происходит полная адгезия биохимического соединения со всеми точками, соответствующими отверстиям 7.

Внутри контейнера 1 находятся первый электрод 10 и второй электрод 11, обращенные друг к другу и к аноду 3, не имеющие, однако, непосредственной электрической связи.

Для увеличения взаимосвязанных поверхностей электроды 10 и 11 имеют U-образную форму с тем, чтобы они и располагались по боковым сторонам анода 3.

Электростимулятор 20 включен между первым электродом 10 и катодом 3. Он может представлять собой осциллятор, формирующий колебания прямоугольной формы или генератор импульсов, индуцируемых вращающимся магнитом.

Действие электростимуляции на биохимическое соединение имеет целью повышение напряжения и тока, которые в сотни раз превышают их значения, необходимые для электростимулятора.

Первый электрод 10 в предпочтительном случае изготовлен из кадмия, второй электрод 12 изготовлен из электролитического алюминия.

Нагрузка, обозначенная в целом цифрой 15, схематически представленная переменным сопротивлением, может быть приложена между вторым электродом 11 и анодом 3. Разумеется нагрузка может быть изменена любым приемлемым путем.

Для регенерации генератора в электролите предусмотрен контейнер 30 с активным материалом. В качестве активного вещества может быть использована смесь хлорида натрия с 30% калия, а контейнер представляет собой фильтр, который может быть введен в расширение 32 основного контейнера и присоединен так, чтобы обеспечивать протекание жидкости.

Тот же самый конструктивный принцип лежит в основе биохимического выпрямителя напряжения, показанного на фиг. 3 и состоящего из контейнера 40, в который помещают раствор 41 латекса молочая, сконденсированного в горячем состоянии и смешанного в холодном состоянии с 20%-нымводным раствором аммиака и 10%-ным раствором бикарбоната натрия.

В раствор помещены два электрода 35 и 36: электрод 35 образован пластиной из электролитического алюминия, а электрод 36 образован платиновой проволочкой, диаметр которой 1 мм и кончик 37 которой контактирует с раствором, в то время как остальная часть корпуса покрыта изоляционной оболочкой 38.

Первый электрод соединен с цепью переменного тока, в то время как электрод 36 образует вторичную цепь с тем, чтобы обеспечить выпрямление на выходе с преобразованием переменного тока в постоянный.

Согласно еще одному варианту, показанному на фиг. 4 - 8, самовозбуждающийся источник электроэнергии на биохимической основе, выполненный согласно изобретению, содержит контейнер 101, изготовленный из электроизоляционного материала и герметически закрытый сверху крышкой 102.

Контейнер 101 помещен во внешний корпус 103, образующий вместе с контейнером 101 промежуточное пространство 104, в котором с помощью циркуляционного насоса 105 циркулирует охлаждающая жидкость. Прохождением охлаждающей жидкости через теплообменник 106 поддерживается заданная температура охлаждающей жидкости, циркулирующей в промежуточном пространстве 104.

Внутри контейнера 101 находится биохимическая жидкость, предпочтительно на основе сыворотки молочая, состав и получение которой приводятся ниже.

Анод 110 погружен в биохимическую жидкость и образован пластиной из никеля чистотой 99%, предпочтительно с размерами 15 х 18 см при толщине 3 мм.

На большие стороны анода 110, предпочтительно с размерами 14 х 17 см при толщине 6 мм, нанесен первый слой 111 и второй слой 112 электроизоляционного материала.

В слоях 112 и 113 предусмотрены сквозные отверстия 114, расположенные таким образом, что их оси составляют прямой угол с поверхностью анода 110. В предпочтительном случае диаметр отверстий 6 мм, и отверстия расположены на расстоянии в 3 мм одно от другого.

Внутрь отверстий 114 вводят биохимическое соединение 116, состав которого приводится ниже.

Катод 120, приложенный к первому слою 111, образован кадмиевой пластиной, предпочтительно с размерами 15 х 18 см при толщине 2 мм.

Приложенный к второму слою 112 электрод-возбудитель 125 образован пластиной из электролитического алюминия предпочтительно с размерами 15 х 18 см при толщине 4 мм.

Между электродом 125 и вторым слоем 112 размещен электроизолирующий элемент, образованный рифленым листом 126, поддерживающим заданное расстояние между вторым слоем 112 и электродом-возбудителем 125.

Между анодом 110 и электродом-возбудителем 125 включен возбудитель, предпочтительно в виде статического осциллятора 130 прямоугольного колебания, который на начальном этапе вызывает самовозбуждение биохимической жидкости.

Предусмотрен и выключатель 135 для селективного активирования возбудителя и блока регенерирования. Выключатель 135 отключает возбудитель после того, как энергия начинает поступать к нагрузке 140.

Выключатель соединяет блок регенерирования биохимической жидкости, содержащий амперометрический преобразователь 141, запускающий мотор 142, предназначенный для доливки регенерированной жидкости. Мотор 142 приводит в движение вал 143, на котором предусмотрены противофазные эксцентрики 144 и 145, действующие на насос 146 для подачи доливаемой жидкости, поступающей из доливочного резервуара 147 и на насос 148 для восстановления жидкости, откачиваемой из элемента и протекающей в контейнере 101, и подачи затем в резервуар-коллектор 149.

Включение амперометрического преобразователя 141 является непосредственной функцией выработанной энергии, и соответственно количество доливочной жидкости возрастает по мере увеличения выработанной электроэнергии и уменьшается с уменьшением энергии.

Внутри контейнера 101 предусмотрен и блок для перемешивания 150, состоящий из ротора 151 в защитном кожухе 152, соединенного с валом 153, выходящим через уплотнение из контейнера и приводимым в движение соответствующим мотором 154.

Мешалка предназначена для поддержания биохимической жидкости внутри элемента в постоянном движении.

Для получения биохимического соединения и биохимической жидкости применяют молочай. Молочай относится к тропическим растениям семейства Euphorbiaceae, и с химической точки зрения содержащийся в его тканях молокообразный сок состоит на 60% из углерода и на 40% из водорода, т.е. классифицируется как углеводород с теми же характеристиками, что и у нефти. Латекс молочая ядовит, имеет резкий запах и смолист.

Для получения биохимической жидкости и биохимического соединения собирают молочай и помещают примерно на 24 часа в чан вместе с водой, которая полностью его покрывает.

Например, 1200 г молочая мелко измельчают, затем погружают в воду и выдерживают в таком состоянии, как упомянуто выше, в течение 24 часов.

Содержащуюся в массе воду отделяют затем декантированием с получением в результате сыворотки молочая.

Вымоченное растение выдерживают примерно 3 часа при 80oC с добавлением порциями при постоянном перемешивании 100 г чистого ацетата никеля.

После охлаждения смеси ее смешивают с 150 г бихромата калия, 50 г окиси алюминия и 50 г водного раствора аммиака, после чего вновь кипятят примерно 20 минут.

К этому моменту соединение становится смолистым, и его шпателем вводят в отверстия 114 слоев 111 и 112, которые наложены на анод 10, таким образом, что содержащееся в отверстиях 114 соединение 116 плотно прилипает к металлу.

По окончании предварительной операции для осуществления контакта с биохимическим соединением на одну из сторон накладывают кадмиевую пластину, а на другую сторону накладывают изоляционный лист и затем алюминиевую пластину с тем, чтобы алюминиевая пластина, образующая возбуждающий электрод, оставалась изолированной от биохимического соединения.

И наконец, после получения пакета из трех электродов пакет, как показано на фиг. 6, подвергают действию давления в 1 кг массы примерно в течение 24 часов возможно в окружающем воздухе.

Для получения биохимической жидкости ранее экстрагированную сыворотку молочая в количестве 600 г смешивают с 80 г промышленного ацетата никеля, 50 г калия и определенным количеством воды двойной перегонки, полностью покрывающей пластины.

В результате получают элемент, генерирующий напряжение в 2,02 вольта и 0,3 ампера на каждый квадратный сантиметр поверхности анода.

Доливочную жидкость получают применением хлорида натрия, например чистой каменной соли в смеси с 30% калия.

Из вышеприведенного описания следует, что изобретение обеспечивает достижение поставленных целей, в частности обеспечено создание источника энергии с непрерывной выработкой тока с использованием доступного активного материала, образуемого хлоридом натрия в смеси с 30% калия.

К вышеизложенному необходимо добавить, что внутри контейнера для удаления из циркулирующего электропроводного раствора каких-либо остаточных микроскопических отработанных частиц может быть предусмотрен электростатический фильтр, и возможно пополнение веществ, диспергируемых в процессе работы.

Ранее упомянуто, что смолистый продукт получают использованием растительных материалов семейства Euphorbiaceae. Следует указать, что наилучшие результаты получены с Calenzola peptus и т.п.

Очевидно, что изобретение может быть осуществлено с разнообразными модификациями и вариациями, которые входят в объем изобретения.

Все детали могут быть заменены другими техническими эквивалентными элементами.

ФОРМУЛА ИЗОБРЕТЕНИЯ

  1. Самовозбуждающийся источник электроэнергии на биохимической основе, отличающийся тем, что содержит внутри контейнера для электролита анод с покрытием из биохимического соединения, первый электрод и второй электрод, электроизолированные друг от друга и погруженные в электролит, кроме того, предусмотрен электростимулятор, присоединенный между анодом и первым электродом, при этом нагрузка присоединена между вторым электродом и анодом.

  2. Источник электроэнергии по п. 1, отличающийся тем, что электролит представляет собой полужидкий раствор, состоящий из чистого ацетата никеля в 70% воды двойной перегонки.

  3. Источник электроэнергии по п. 1 или 2, отличающийся тем, что анод выполнен в виде пластины из чистого никеля, на стороны которой нанесено смолистое биохимическое соединение.

  4. Источник электроэнергии по любому из пп.1 - 3, отличающийся тем, что смолистое биохимическое соединение образовано латексом молочая, переведенным в смолистое состояние, в коллоидном растворе с 10% окиси алюминия и 30% чистого ацетата никеля.

  5. Источник электроэнергии по любому из пп.1 - 4, отличающийся тем, что биохимическое соединение нанесено на поверхность панелей, в которых выполнены отверстия и которые наложены на указанную пластину.

  6. Источник электроэнергии по любому из пп.1 - 5, отличающийся тем, что при сборке панели прессуют в течение примерно 12 ч для полной адгезии биохимического соединения с отверстиями.

  7. Источник электроэнергии по любому из пп.1 - 6, отличающийся тем, что первый электрод и второй электрод обращены друг к другу и выполнены в U-образной форме с тем, чтобы они располагались по боковым сторонам анода.

  8. Источник электроэнергии по любому из пп.1 - 7, отличающийся тем, что первый электрод выполнен из кадмия.

  9. Источник электроэнергии по любому из пп.1 - 8, отличающийся тем, что второй электрод выполнен из электролитического алюминия.

  10. Источник электроэнергии по любому из пп.1 - 9, отличающийся тем, что электростимулятор выполнен в виде осциллятора.

  11. Источник электроэнергии по любому из пп.1 - 10, отличающийся тем, что электростимулятор выполнен в виде генератора импульсов, индуцируемых вращающимся магнитом.

  12. Источник электроэнергии по любому из пп.1 - 11, отличающийся тем, что с боковой стороны контейнера выполнено расширение, связанное с контейнером с обеспечением возможности протекания жидкости, предназначенное для ввода активного материала для регенерации источника.

  13. Источник электроэнергии по любому из пп.1 - 12, отличающийся тем, что активный материал содержит соединение хлорида натрия с 30% калия.

  14. Источник электроэнергии по любому из пп.1 - 13, отличающийся тем, что активный материал размещен в фильтре, предназначенном для введения в упомянутое расширение контейнера.

  15. Источник электроэнергии по любому из пп.1 - 14, отличающийся тем, что латекс молочая получен из растительных продуктов семейства Euphrobiaaceae, предпочтительно Calenzola peptus и т.п.

  16. Самовозбуждающийся источник электроэнергии на биохимической основе, отличающийся тем, что внутри контейнера с биохимической жидкостью размещены анод, выполненный в виде никелевой пластины, на поверхности которой нанесены слои электроизоляционного материала, причем в слоях имеются сквозные отверстия, в которых биохимическое соединение введено внутрь анода, катод, выполненный в виде кадмиевой пластины, наложенной на один из слоев, электрод-возбудитель в виде алюминиевой пластины, наложенной на другой из слоев с промежуточным положением между пластиной и слоем электроизоляционного элемента, при этом между анодом и электродом-возбудителем присоединен возбудитель, а между анодом и катодом присоединена нагрузка, а и источник содержит блок регенерирования биохимической жидкости.

  17. Источник электроэнергии по п.16, отличающийся тем, что содержит внешний корпус, образующий вместе с контейнером промежуточное пространство для циркулирования охлаждающей жидкости.

  18. Источник электроэнергии по п.16 или 17, отличающийся тем, что электроизоляционный элемент выполнен в виде рифленого листа, предназначенного для разделения алюминиевой пластины от биохимического соединения.

  19. Источник электроэнергии по любому из пп.16 - 18, отличающийся тем, что возбудитель выполнен в виде статического осциллятора прямоугольных колебаний.

  20. Источник электроэнергии по любому из пп.16 - 19, отличающийся тем, что блок регенерирования биохимической жидкости содержит амперометрический преобразователь, предназначенный для запуска мотора для доливки регенерируемой жидкости, связанного с валом, на котором установлены противофазные эксцентрики, действующие на насос для подачи регенерируемой жидкости из доливочного резервуара, и насоса для восстановления жидкости, удаляемой из элемента и текущей внутри контейнера, предназначенного для подачи жидкости в резервуар-коллектор.

  21. Источник электроэнергии по любому из пп.16 - 20, отличающийся тем, что содержит выключатель для селективного активирования возбудителя и блока регенерирования.

  22. Источник электроэнергии по любому из пп.16 - 21, отличающийся тем, что внутри контейнера размещен блок для перемешивания биохимической жидкости.

  23. Источник электроэнергии по любому из пп.1 - 22, отличающийся тем, что блок для перемешивания содержит ротор в защитном кожухе, соединенный с валом, выходящим через уплотнение из контейнера, а и предусмотрен мотор для вращения вала.

  24. Источник электроэнергии по любому из пп.1 - 23, отличающийся тем, что биохимическая жидкость содержит 600 г сыворотки молочая, 80 г промышленного ацетата никеля, 50 г калия и воду двойной перегонки в количестве, достаточном для полного покрывания указанных пластин.

  25. Источник электроэнергии по любому из пп.1 - 24, отличающийся тем, что регенерационная жидкость содержит хлорид натрия, например, чистую каменную соль в смеси с 30% калия.

  26. Источник электроэнергии по любому из пп.1 - 25, отличающийся тем, что содержит размещенный в контейнере электростатический фильтр, предназначенный для удаления из циркулирующего электроводного раствора остаточных микроскопических отработанных частиц.

  27. Способ получения биохимического соединения, отличающийся тем, что вымачивают 1200 г измельченного молочая погружением его на 24 ч в воду, после вымачивания воду декантируют с извлечением сыворотки молочая; замоченный молочай выдерживают примерно 3 ч при 80oC с добавлением порциями при непрерывном перемешивании 100 г чистого ацетата никеля; затем массу охлаждают и смешивают с 150 г биохромата калия, 50 г окиси алюминия и 50 г водного аммиака, кипятят 20 мин с получением смолистой смеси, представляющей собой упомянутое биохимическое соединение.

Версия для печати
Дата публикации 05.11.2006гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018