special
  •  #StandWithUkraine Ukraine flag |
  • ~502340+1150
     Enemy losses on 824th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2160417

НАСОС-ТЕПЛОГЕНЕРАТОР ДЛЯ АВТОНОМНЫХ ЗАМКНУТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

Имя изобретателя: Петраков Александр Дмитриевич; Маспанов Геннадий Павлович
Имя патентообладателя: Петраков Александр Дмитриевич; Маспанов Геннадий Павлович
Адрес для переписки: 658224, Алтайский край, г. Рубцовск, пр. Ленина 64, кв.116, Петракову А.Д.
Дата начала действия патента: 1998.05.29

Изобретение относится к конструкциям насосов-теплогенераторов, которые могут быть использованы в автономных замкнутых системах теплоснабжения и нагрева жидкости в технологических системах без сгорания органического топлива. Роторный насос-теплогенератор содержит полый корпус со всасывающим патрубком для подвода нагреваемой жидкости и нагнетательным патрубком для отвода нагретой жидкости. Внутри расположены ротор в виде центробежного колеса с отверстиями по периферии и статор с отверстиями. Статор установлен коаксиально ротору. Центробежное колесо выполнено двухпоточным. Отверстия ротора - в виде коноидальных насадков, сужающихся в сторону статора. Отверстия статора выполнены в виде внезапно расширяющихся насадков с переходом в конические расходящиеся насадки с углом расширения =90°. Такая форма отверстий статора позволяет устранить эффект Коанда (прилипания) пограничного слоя жидкости к прилегающей стенке и увеличить зоны гидродинамической кавитации. Изобретение направлено на создание более простого устройства, а и интенсификацию нагрева жидкости за счет повышения силы гидравлического удара и гидродинамической кавитации.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к конструкциям насосов-теплогенераторов, которые могут быть использованы преимущественно в автономных замкнутых системах теплоснабжения жилых, общественных и промышленных зданий, а и для нагрева жидкостей в технологических системах.

Ближайшим технологическим решением является ультразвуковой активатор (патент RU N 2054604 C1 от 20.02.1996), содержащий две или более соединенные последовательно рабочие камеры, в каждой из которых установлены рабочие колеса центробежного насоса, скрепленные на периферии роторами в виде перфорированных колец. Коаксиально роторам в корпусах рабочих камер напротив каждого ротора закреплен статор, выполненный в виде перфорированного кольца. Рабочие камеры сообщены между собой посредством диффузоров. Последняя рабочая камера соединена с первой камерой циркуляционным контуром.

Недостатками известного устройства являются:

  • большие осевые нагрузки на подшипники;
  • нетехнологичность сборки, так как требуется поэлементная единовременная сборка ротора, деталей корпуса, статора;
  • трудность обеспечения взаимной центровки спрягаемых деталей;
  • сложность обеспечения высокой плотности корпуса устройства при колебаниях давления и температуры.

Задача изобретения - создание более простого устройства, а и интенсификация нагрева жидкости за счет повышения силы гидравлического удара и гидродинамической кавитации.

Поставленная задача достигается тем, что в роторном гидроударном насосе-теплогенераторе, содержащем корпус с патрубками для подвода и отвода жидкости, внутри корпуса концентрично друг другу расположены ротор и статор. В периферийной части ротора выполнены отверстия в виде коноидальных насадков, расширяющиеся части которых расположены к центру ротора. В статоре отверстия выполнены расширяющимися в сторону корпуса и имеющими форму внезапно расширяющегося насадка с переходом в конический расходящийся насадок с углом расширения =90o.

Такая форма отверстий статора позволяет устранить эффект Коанда - прилипания пограничного слоя жидкости к прилегающей стенке и в большей степени способствует возникновению гидродинамической кавитации, чем, например, отверстия статора, выполненные в виде конического расходящегося насадка.

Ротор оснащен лопатками, как центробежный насос, предназначенными для сообщения центробежной силы нагреваемой жидкости.

НАСОС-ТЕПЛОГЕНЕРАТОР ДЛЯ АВТОНОМНЫХ ЗАМКНУТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

На фиг. 1 изображен продольный разрез насоса-теплогенератора, состоящего из следующих основных деталей:

1 - полый корпус (статор);

2 - кольцо статора с отверстиями;

3 - ротор, выполненный в виде двухпоточного центробежного колеса;

4 - вал ротора;

5 - кольцо ротора с отверстиями;

6 - всасывающие патрубки корпуса насоса-теплогенератора;

НАСОС-ТЕПЛОГЕНЕРАТОР ДЛЯ АВТОНОМНЫХ ЗАМКНУТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

На фиг. 2 изображен поперечный разрез насоса-теплогенератора:

7 - патрубок для отвода нагреваемой жидкости;

8 - всасывающие полости ротора.

 

НАСОС-ТЕПЛОГЕНЕРАТОР ДЛЯ АВТОНОМНЫХ ЗАМКНУТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

На фиг. 3 изображено положение колец ротора и статора при совмещении отверстий. В этом положении в зонах II возникает гидродинамическая кавитация.

НАСОС-ТЕПЛОГЕНЕРАТОР ДЛЯ АВТОНОМНЫХ ЗАМКНУТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

На фиг. 4 изображено положение колец ротора и статора при несовпадении (перекрытии) отверстий. В этот момент в зонах I ротора возникают гидравлические удары, а в зонах II исчезают кавитационные пузырьки под действием гидростатического давления в нагнетательной полости.

РАБОТАЕТ ОПИСАННЫЙ НАСОС-ТЕПЛОГЕНЕРАТОР СЛЕДУЮЩИМ ОБРАЗОМ

Нагреваемая жидкость по всасывающему патрубку 6 полого корпуса 1 фиг. 1 поступает во всасывающую полость 8 и, разделившись на два потока, направляется в ротор 3, выполненный в форме двухпоточного рабочего колеса центробежного насоса.

Ротор 3, вращаясь, воздействует лопатками на жидкость, отбрасывая ее к периферийной части и сообщая потоку жидкости кинетическую энергию.

Жидкость, проходя через коноидальные отверстия, разделяется на струи с максимальной удельной кинетической энергией и максимальной скоростью по сравнению с другими формами насадок.

В момент перекрытия отверстий ротора 5 боковыми стенками статора 2 фиг. 4 происходит резкое повышение давления (в зоне I фиг. 4) - прямой гидравлический удар. Так как количество отверстий в роторе и статоре одинаковое, то радиальные направления гидравлических ударов струек равномерно распределены по окружности статора. В момент совмещения отверстий ротора и статора происходит резкое снижение давления и часть энергии жидкости переходит в тепловую энергию, которую можно определить по формуле:

В момент совмещения отверстий ротора 5 и статора 6 жидкость, получившая высокую кинетическую энергию, попадает в расходящиеся отверстия статора, где происходит резкое повышение давления и падение скорости жидкости, а из-за внезапного расширения отверстий в статоре и из-за большого угла расширения стенок отверстий - фиг. 3 - происходит отрыв струи жидкости от стенок. В зоне II фиг. 3 происходит резкое понижение давления ниже давления водяных паров, жидкость вскипает, возникает гидродинамическая кавитация. В момент следующего перекрытия отверстий ротора стенками статора в отверстиях статора, в зонах II, давление повышается, и кавитационные пузырьки "схлопываются", вызывая местные гидравлические микроудары, сопровождающиеся высокими забросами давления до 1500-2000 кг/см2 и температуры 1000-1500oC.

Колебания гидравлической системы, вызванные гидравлическими ударами и гидродинамической кавитацией, налагаясь, способствуют возникновению режима автоколебаний. С момента установления режима автоколебаний скорость нагрева жидкости резко возрастает.

Жидкость, нагретая в результате выделения энергии, вытесняется к выпускному патрубку 7 фиг. 2 и направляется в систему теплопотребления.

Указанный насос-теплогенератор можно применять для отопления и горячего водоснабжения коттеджей, сельских, гражданских и промышленных объектов, а и для нагрева жидкостей в технологических процессах.

Использование предлагаемого насоса-теплогенератора позволяет обеспечить горячей водой и тепловой энергией объекты, удаленные от магистральных трубопроводов, а окружающая среда не загрязняется продуктами сгорания топлива в местах выработки тепловой энергии.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Т.М. Башта. Машиностроительная гидравлика. - М.: Машиностроение, 1971 г., стр. 44-49, 118, 349, 375, 379-381, 509-512.

2. Л. М. Курганов, Н.Ф. Федоров. Справочник по гидравлическим расчетам систем водоснабжения и канализации. - Ленинград: Стройиздат, 1973 г., стр. 56-67, 185-194.

3. Л.И. Богомолов, К.А. Михайлов. Гидравлика. - М.: Стройиздат, 1972 г., стр. 87-92, 142-150, 398-405.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Роторный насос-теплогенератор, содержащий полый корпус со всасывающим патрубком для подвода нагреваемой жидкости и нагнетательным патрубком для отвода нагретой жидкости и расположенные внутри корпуса ротор в виде центробежного колеса с отверстиями по периферии и статор с отверстиями, установленный коаксиально ротору, отличающийся тем, что центробежное колесо выполнено двухпоточным, отверстия в роторе - в виде коноидальных насадок, сужающихся в сторону статора, а отверстия последнего - в виде внезапно расширяющихся насадков с переходом в конические расходящиеся насадки с углом расширения = 90o.

Версия для печати
Дата публикации 08.12.2006гг

 

 


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018