This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2248509

СПОСОБ ПОЛУЧЕНИЯ ГОРЯЧЕГО ВОЗДУХА

Имя изобретателя: Перельштейн Б.Х. (RU)
Имя патентообладателя: Казанский государственный технический университет им. А.Н. Туполева (RU); Перельштейн Борис Хаимович (RU)
Адрес для переписки: 420111, г.Казань, ул. К. Маркса, 10, КГТУ им.А.Н.Туполева, патентный отдел
Дата начала действия патента: 2002.04.18

Изобретение относится к области газотурбостроения и может быть использовано для создания промышленных установок с целью получения горячего воздуха для использования его в процессах отопления, нагрева химпродуктов, пара. Способ получения горячего воздуха включает расширение воздуха на турбине перерасширения до низких температур, нагрев его в первом теплообменнике утилизационным теплом, сжатие до начального давления в дожимающем компрессоре, отвод тепла во втором питательном теплообменнике и подачу сжатого сухого воздуха в ресивер. В ресивере воздух нагревают. Использование изобретения позволит создать более эффективный способ получения горячего воздуха.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к области газотурбостроения и может быть использовано для генерации источника греющей температуры, в частности, плюс 100° С-150° С из энергии утилизационных потоков при их температуре плюс 20° С - плюс 60° С.

Известны способы получения горячего воздуха на тепловых насосах на базе обращенного цикла Брайтона (цикла Лоренца), включающие в себя процесс сжатия, отвод тепла, расширения, подвод тепла от внешнего источника.

Главным недостатком простого обращенного цикла Брайтона (цикла Лоренца) является то,что при достижении температуры ниже нуля за турбиной и в теплообменнике ввода тепла наступает обледенение, как со стороны хладагента (воздуха), так и со стороны утилизируемого потока. Для недопущения снижения температуры ниже нуля необходимо ограничить степень сжатия в компрессоре и(или) количество снимаемого тепла в питательном теплообменнике. Снижение степени повышения давления в основном теплообменнике снизит греющую температуру (Болгарский А.В., Мухачев Г.А., Щукин В.К. Термодинамика и теплопередача. М., “Высшая школа”, 1973. Техника машиностроения, 2002, № 3 (37), П.А.Шелест. Учение о теплоте и тепловых насосах. Техника машиностроения, 2002, № 3 (37), с. 122-132).

Известны способ и устройство, и реализующие цикл Лоренца, описанные в патенте РФ № 2136929, F 24 F 3/14, F 02 С 6/00, 1999. Устройство реализовано в способе: воздух расширяют на турбине до температуры 0° С, осуществляют теплообмен и сжимают в компрессоре, подают с температурой порядка 45° С во внешнюю среду.

Использование подобной установки для получения горячего воздуха с температурой порядка 100-150° С, например, для отопления или высокотемпературного нагрева, невозможно. При высоких степенях повышения давления (для получения высоких температур за компрессором) температура за турбиной будет существенно меньше нуля. Последнее, как и в аналоге (патент РФ № 2136929), - научная проблема, которая сдерживает высокоэффективное использование (с точки зрения термодинамики) воздушных тепловых насосов, создаваемых на базе турбомашин.

Ближайшим аналогом заявленного способа является способ получения горячего воздуха, включающий расширение воздуха в турбине перерасширения до низких температур, нагрев его в первом теплообменнике утилизационным теплом, сжатие до начального давления в дожимающем компрессоре, отвод тепла во втором питательном теплообменнике и подачу сжатого сухого воздуха в ресивер (см. а.с. СССР 1262217, кл. F 25 В 11/00, 1986).

Изобретение ставит своей задачейсоздание более эффективного способа получения горячего воздуха, где повышение температуры за компрессором не связывается напрямую с получением температуры за турбиной ниже нуля.

Поставленная задача решается тем, что в способе получения горячего воздуха, включающий расширение воздуха на турбине перерасширения до низких температур, нагрев его в первом теплообменнике утилизационным теплом, сжатие до начального давления в дожимающем компрессоре, отвод тепла во втором питательном теплообменнике и подачу сжатого сухого воздуха в ресивер, согласно изобретению, в ресивере воздух нагревают.

СПОСОБ ПОЛУЧЕНИЯ ГОРЯЧЕГО ВОЗДУХА СПОСОБ ПОЛУЧЕНИЯ ГОРЯЧЕГО ВОЗДУХА
СПОСОБ ПОЛУЧЕНИЯ ГОРЯЧЕГО ВОЗДУХА СПОСОБ ПОЛУЧЕНИЯ ГОРЯЧЕГО ВОЗДУХА

Обратимся к фиг.1, где показан газодинамический нагреватель 1, который может приводиться, например, электродвигателем 2. Агрегат включает воздушную турбину перерасширения 3, утилизационный теплообменник 4 (первый теплообменник), дожимающий компрессор 5, подогреватель 6, например, химпродукта (второй питательный теплообменник) и ресивер 7.

СПОСОБ ОСУЩЕСТВЛЯЮТ СЛЕДУЮЩИМ ОБРАЗОМ

В ресивере 7 воздух нагревают посредством электрических тэнов (не показано). Сухой воздух из ресивера 7 поступает на турбину перерасширения 3 (температура за турбиной, как правило, 0° С), нагревается в утилизационном теплообменнике 4 и сжимается до начального давления в ресивере 7 в дожимающем компрессоре 5. Отвод тепла в теплообменнике 6 происходит из условия постоянства температуры в ресивере 7.

Для технико-экономического анализа обратимся к графикам на фиг.2-4. Здесь (на фиг.2 и 3) по оси абсцисс отложена температура греющего тела (внешняя температура), по оси ординат - температура за компрессором (фиг.2) и величина теплового коэффициента (фиг.3):

р·ивтинт)/Е0,

где Тивт - температура источника высокой температуры (за компрессором), Тинт - температура источника низкой температуры внешнего теплоносителя, Е0- подводимая мощность.

Для подобных машин (работающих с температурой не ниже нуля градусов за турбиной) достижение топливного коэффициента за компрессором 100-150° С является хорошим показателем.

В классических тепловых насосах, использующих фреон, хладон, аммиак и др., можно получить высокий топливный коэффициент (более>2,5) при разнице между холодным и горячим источником менее 40° С. Зависимость КПД() в существующих тепловых насосах от разницы температур на входе и выходе из компрессора показана на фиг.4. (П.А.Шелест, Учение о теплоте и тепловых насосах, Техника машиностроения, 2002, № 3 (37), с.122-123).

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения горячего воздуха, включающий расширение воздуха на турбине перерасширения до низких температур, нагрев его в первом теплообменнике утилизационным теплом, сжатие до начального давления в дожимающем компрессоре, отвод тепла во втором питательном теплообменнике и подачу сжатого сухого воздуха в ресивер, отличающийся тем, что в ресивере воздух нагревают.

Версия для печати
Дата публикации 07.12.2006гг

 

 


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

stop war in Ukraine

ukrTrident

stand with Ukraine