special
  •  #StandWithUkraine Ukraine flag |
  • ~493690+1400
     Enemy losses on 817th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2147356

СПОСОБ РАБОТЫ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

СПОСОБ РАБОТЫ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

Имя изобретателя: Шарапов В.И.; Пазушкин П.Б. 
Имя патентообладателя: Ульяновский государственный технический университет
Адрес для переписки: 432027, Ульяновск, ул.Северный Венец, 32, Ульяновский государственный технический университет, проректору по НИР
Дата начала действия патента: 1998.09.11 

Изобретение может быть использовано в области теплоэнергетики. Способ работы системы теплоснабжения заключается в том, что потребителю подают сетевую воду, которую нагревают последовательно в нижнем и верхнем сетевых подогревателях теплофикационной турбины, потери сетевой воды восполняют подпиточной водой, которую перед подачей в тепловую сеть нагревают и деаэрируют под вакуумом. Нагрев подпиточной воды перед вакуумной деаэрацией производят сетевой водой, которую отбирают для этой цели после нижнего сетевого подогревателя турбины. Технический результат - повышение надежности и экономичности способа теплоснабжения.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к области теплоэнергетики и может быть использовано в установках для подготовки подпиточной воды систем теплоснабжения.

Известны способы работы системы теплоснабжения, по которым потребителям тепла подают нагретую сетевую воду, потери сетевой воды в теплосети восполняют подпиточной водой, которую перед подачей в теплосеть нагревают во встроенном пучке конденсатора турбины, декарбонизируют и деаэрируют (а.с. 1366656 - данный аналог принят в качестве прототипа). Применение прототипа позволяет поддерживать в течение всего года температуру воды, используемой в качестве греющего агента для вакуумного деаэратора, на уровне 90-100oC.

Недостатком прототипа и аналогов является пониженная надежность теплоснабжения из-за невозможности организовать достаточный подогрев подпиточной воды после встроенного пучка конденсатора, необходимый для химводоочистки и эффективной деаэрации. Нагрев исходной воды после встроенного пучка конденсатора зависит от сезонных пропусков пара в конденсатор и колеблется в пределах 10-30oC, а для нормальной работы узла химводоочистки и вакуумного деаэратора нагрев должен составлять 40-50oC.

Технический результат изобретения - повышение надежности и экономичности теплоснабжения за счет обеспечения технологически необходимого подогрева подпиточной воды перед вакуумным деаэратором при использовании низкопотенциального теплоносителя.

С этой целью предложен способ работы системы теплоснабжения, по которому потребителю подают сетевую воду, которую нагревают последовательно в нижнем и верхнем сетевых подогревателях теплофикационной турбины, потери сетевой воды восполняют подпиточной водой, которую перед подачей в тепловую сеть нагревают и деаэрируют под вакуумом, отличающийся тем, что нагрев подпиточной воды перед вакуумной деаэрацией производят сетевой водой, которую отбирают для этой цели после нижнего сетевого подогревателя турбины.

Рассмотрим конкретный пример реализации способа

На чертеже показана схема теплоснабжающей установки, поясняющая способ. Установка состоит из включенных в сетевой трубопровод 1 нижнего 2 и верхнего 3 сетевых подогревателей и включенных в трубопровод подпиточной воды 4 встроенного пучка конденсатора 5 турбины 6, водо-водяного подогревателя 7, узла химводоочистки 8, декарбонизатора 9 и вакуумного деаэратора 10, греющим агентом для которого служит сетевая вода после верхнего сетевого подогревателя 3. Трубопровод подпиточной воды 4 соединен с трубопроводом сетевой воды 1 до нижнего сетевого подогревателя 2.

СПОСОБ РАБОТЫ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

В соответствии с предложенным способом обратную сетевую воду нагревают с 40-70oC до 90-100oC в нижнем 2 и верхнем 3 сетевых подогревателях. Потери сетевой воды в теплосети восполняют подпиточной водой, которую после встроенного пучка конденсатора турбины нагревают до 40-50oC сетевой водой, отобранной после нижнего сетевого подогревателя 2 в водо-водяном подогревателе 7. Далее подпиточную воду умягчают в узле химводоочистки, декарбонизируют в декарбонизаторе 9 и деаэрируют в вакуумном деаэраторе 10, после чего подают в сетевой трубопровод 1. Поскольку температуру сетевой воды после верхнего сетевого подогревателя поддерживают в течение всего года 90-100oC, температура воды за нижним сетевым подогревателем (65-85oC) достаточна для подогрева до 40-50oC исходной воды.

Таким образом, предложенное решение позволяет повысить надежность и экономичность теплоснабжения благодаря эффективной обработке подпиточной воды при использовании для подогрева воды, полученной от пара низкопотенциального нижнего отбора турбины.

Новизна и изобретательский уровень заявленного решения обусловлены новой технологией проведения операции нагрева подпиточной воды перед вакуумной деаэрацией: нагрев подпиточной воды производят сетевой водой, которую отбирают для этой цели после нижнего сетевого подогревателя турбины.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ работы системы теплоснабжения, по которому потребителю подают сетевую воду, которую нагревают последовательно в нижнем и верхнем сетевых подогревателях теплофикационной турбины, потери сетевой воды восполняют подпиточной водой, которую перед подачей в тепловую сеть нагревают и деаэрируют под вакуумом, отличающийся тем, что нагрев подпиточной воды перед вакуумной деаэрацией производят сетевой водой, которую отбирают для этой цели после нижнего сетевого подогревателя турбины.

Версия для печати
Дата публикации 26.03.2007гг

 

 


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018