special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.

Математичне програмування - Наконечний С.І.

9.2. Задача про розподіл капіталовкладень між двома підприємствами на n років

Розглянемо задачу динамічного програмування на прикладі задачі про розподіл капіталовкладень.

Допустимо, що розглядається виробнича система, яка складається з двох підприємств. Нехай плановий період складається з n інтервалів-частин (наприклад, років), і протягом даного періоду слід використати суму коштів b, що має бути розподілена між двома підприємствами. Відомі прибутки, які приносять вкладення коштів: вкладення у перше підприємство обсягом x приносить прибуток , а друге підприємство дає з такої ж суми прибутку .

Необхідно розподілити кошти на період у n років так, щоб досягти максимального прибутку за весь плановий період.

Можна легко сформулювати задачу, коли плановий період складається з одного року (однокрокова задача).

Якщо в перше підприємство здійснили вкладення обсягом x, тоді сума вкладених у друге підприємство коштів становить і дає прибуток .

У такому разі маємо однокрокову задачу:

за умов:

,

.

Введемо позначення:

, , , , тоді задача матиме вигляд:

; (9.1)

. (9.2)

Тепер розглянемо цю задачу оптимального розподілу капітальних вкладень, якщо вона складається з двох періодів (етапів).

Оскільки прибуток утворюється в результаті випуску та реалізації продукції, що пов’язано з певними виробничими витратами, то на початок другого періоду початкова сума зменшиться до величини , де , а сума — до величини , де . Щоб визначити найбільший прибуток, який можна отримати від сумарного залишку протягом другого етапу, необхідно розв’язати задачу математичного програмування, аналогічну до задачі (9.1)—(9.2), тобто:

, (9.3)

. (9.4)

Поставимо тепер задачу оптимального поточного планування розподілу капіталовкладень по всіх n інтервалах періоду, причому принцип розподілу вкладень у кожному з періодів полягає у відшуканні оптимального використання тієї суми коштів, що залишається на кінець попереднього періоду. Критерій оптимальності не змінюється і полягає в максимізації прибутку за весь період. Тоді для k-го етапу (періоду) залишок коштів після використання в попередньому періоді становитиме . Визначаємо оптимальну суму коштів , що доцільно вкладати в перше підприємство в k-му періоді, розв’язуючи таку задачу:

, (9.5)

. (9.6)

Оскільки критерієм оптимальності є максимізація загального прибутку за всі n періодів, то в цілому необхідно знайти максимальне значення функціонала, що складається із максимальних значень прибутків кожного окремого періоду, тобто загальна задача має вид:

(9.7)

за умов:

, (9.8)

.

Цільова функція (9.7) є функцією n змінних і залежить від початкового параметра .

Розв’язування задачі (9.7)—(9.8) розглянутими раніше однокроковими методами може виявитися неможливим. Проте міркування, які привели до формулювання задачі (9.7)—(9.8), породжують ідею побудови алгоритму поетапного розв’язування динамічних задач.



 

Created/Updated: 25.05.2018

';>